Skip to main content

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

The Gravity Recovery and Climate Experiment (GRACE) mission is a key instrument to monitor and understand variations in the mass distribution of the Earth. The primary observable is the (biased) range between the two satellites which is a geometric observation. The task is therefore to connect this kind of observation to the physically meaningful gravity field of the Earth or in other words connecting the kinematic observation to a force. Various approaches exist. Here, the focus is on the so-called acceleration approach which conceptually tries to avoid the solution of the variational equations by linking observed range accelerations to the gradient of the gravitational potential. Practically, it requires the observation of range accelerations, the attitude and their changes with matching precision in all three dimensions which are currently not available for GRACE. Three possible solutions are presented: (1) an approximate solution neglecting terms with low precision observations by reducing the basic equation to residual quantities, (2) a stringent solution by considering the term of low precision as unknown and solving it via the variational equations and (3) an alternative description using rotational quantities. Only the second approach yields solutions at the same level of precision as other approaches but offers no conceptual or computational advantage due to the need for solving the variational equations. The first kind of solution results primarily in a mis-modeling of long-wavelength signal but may still serve well for local or regional solutions. The third kind of solution is currently not feasible since the required precision in the attitude information is far from being available. However, it offers interesting insight into the observation system. It allows to describe GRACE as a two-dimensional observation system and explain mathematically the poor East-West sensitivity yielding the striping artifact in today’s GRACE solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weigelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weigelt, M. (2017). The Acceleration Approach. In: Naeimi, M., Flury, J. (eds) Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-49941-3_4

Download citation

Publish with us

Policies and ethics