Skip to main content

Pathology of Vascular Changes in Interstitial Lung Diseases

  • Chapter
  • First Online:
Pulmonary Hypertension and Interstitial Lung Disease

Abstract

Interstitial lung diseases (ILDs) embrace a heterogeneous group of disorders with diverse clinical outcomes. ILDs are classically separated into four categories: (i) ILDs of known cause, such as those in relation with occupational or environmental exposures, drugs, connective tissue diseases (CTDs), or vasculitis; (ii) idiopathic interstitial pneumonias (IIPs); (iii) sarcoidosis; and (iv) particular forms of ILDs, such as pulmonary Langerhans cell histiocytosis (PLCH), lymphangioleiomyomatosis (LAM), chronic idiopathic eosinophilic pneumonia [1]. More frequent ILDs are sarcoidosis, CTD-associated ILDs, hypersensitivity pneumonitis, and the chronic fibrosing IIPs, including idiopathic pulmonary fibrosis (IPF) and nonspecific interstitial pneumonia (NSIP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travis WD et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.

    Article  PubMed  Google Scholar 

  2. Seeger W et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62:D109–16.

    Article  PubMed  Google Scholar 

  3. Nathan SD, Hassoun PM. Pulmonary hypertension due to lung disease and/or hypoxia. Clin Chest Med. 2013;34:695–705.

    Article  PubMed  Google Scholar 

  4. Simonneau G et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.

    Article  PubMed  Google Scholar 

  5. Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2:675–709.

    PubMed  PubMed Central  Google Scholar 

  6. Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB. Pathology of pulmonary hypertension. Clin Chest Med. 2013;34:639–50.

    Article  PubMed  Google Scholar 

  7. Stevens T et al. Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc. 2008;5:783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagenvoort CA. Morphologic changes in intrapulmonary veins. Hum Pathol. 1970;1:205–13.

    Article  CAS  PubMed  Google Scholar 

  9. Farkas L, Kolb M. Pulmonary microcirculation in interstitial lung disease. Proc Am Thorac Soc. 2011;8:516–21.

    Article  CAS  PubMed  Google Scholar 

  10. Hanumegowda C, Farkas L, Kolb M. Angiogenesis in pulmonary fibrosis: too much or not enough? Chest. 2012;142:200–7.

    Article  CAS  PubMed  Google Scholar 

  11. Renzoni EA. Neovascularization in idiopathic pulmonary fibrosis: too much or too little? Am J Respir Crit Care Med. 2004;169:1179–80.

    Article  PubMed  Google Scholar 

  12. Tuder RM et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Voelkel NF, Douglas IS, Nicolls M. Angiogenesis in chronic lung disease. Chest. 2007;131:874–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hopkins N, McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J Anat. 2002;201:335–48.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S. Pathology of pulmonary hypertension. Clin Chest Med. 2007;28:23–42, vii.

    Google Scholar 

  16. Montani D et al. Pulmonary veno-occlusive disease. Eur Respir J. 2016;47:1518–34.

    Article  PubMed  Google Scholar 

  17. Cottin V et al. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J. 2005;26:586–93.

    Article  CAS  PubMed  Google Scholar 

  18. Raghu G et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim K-H et al. Iron deposition and increased alveolar septal capillary density in nonfibrotic lung tissue are associated with pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Res. 2010;11:37.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colombat M et al. Pulmonary vascular lesions in end-stage idiopathic pulmonary fibrosis: Histopathologic study on lung explant specimens and correlations with pulmonary hemodynamics. Hum Pathol. 2007;38:60–5.

    Article  CAS  PubMed  Google Scholar 

  21. Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax. 1963;18:225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Renzoni EA et al. Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med. 2003;167:438–43.

    Article  PubMed  Google Scholar 

  23. Cosgrove GP et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med. 2004;170:242–51.

    Article  PubMed  Google Scholar 

  24. Ebina M et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169:1203–8.

    Article  PubMed  Google Scholar 

  25. Judge EP, Fabre A, Adamali HI, Egan JJ. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Eur Respir J. 2012;40:93–100.

    Article  PubMed  Google Scholar 

  26. Keane MP et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol Baltim Md. 1997;1950(159):1437–43.

    Google Scholar 

  27. Keane MP et al. ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001;164:2239–42.

    Article  CAS  PubMed  Google Scholar 

  28. Burdick MD et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med. 2005;171:261–8.

    Article  PubMed  Google Scholar 

  29. Keane MP et al. Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis. J Immunol Baltim Md. 1999;1950(162):5511–8.

    Google Scholar 

  30. Russo RC et al. Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol. 2009;40:410–21.

    Article  CAS  PubMed  Google Scholar 

  31. Giaid A et al. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet Lond Engl. 1993;341:1550–4.

    Article  CAS  Google Scholar 

  32. Hocher B et al. Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice. Am J Respir Cell Mol Biol. 2000;23:19–26.

    Article  CAS  PubMed  Google Scholar 

  33. Saleh D et al. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines. Am J Respir Cell Mol Biol. 1997;16:187–93.

    Article  CAS  PubMed  Google Scholar 

  34. Park SH, Saleh D, Giaid A, Michel RP. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med. 1997;156:600–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wan Y-Y et al. Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats. Respir Res. 2013;14:56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Richter AG et al. Soluble endostatin is a novel inhibitor of epithelial repair in idiopathic pulmonary fibrosis. Thorax. 2009;64:156–61.

    Article  CAS  PubMed  Google Scholar 

  37. Margaritopoulos GA et al. Investigation of angiogenetic axis Angiopoietin-1 and -2/Tie-2 in fibrotic lung diseases: a bronchoalveolar lavage study. Int J Mol Med. 2010;26:919–23.

    CAS  PubMed  Google Scholar 

  38. Koyama S et al. Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med. 2002;166:382–5.

    Article  PubMed  Google Scholar 

  39. Meyer KC, Cardoni A, Xiang ZZ. Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease. J Lab Clin Med. 2000;135:332–8.

    Article  CAS  PubMed  Google Scholar 

  40. Farkas L et al. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest. 2009;119:1298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patel NM et al. Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis. Eur Respir J. 2013;41:1324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoffmann J et al. Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension. Am J Respir Crit Care Med. 2014;190:98–111.

    Article  CAS  PubMed  Google Scholar 

  43. King TE, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet Lond Engl. 2011;378:1949–61.

    Article  Google Scholar 

  44. Calabrese F et al. Herpes virus infection is associated with vascular remodeling and pulmonary hypertension in idiopathic pulmonary fibrosis. PLoS One. 2013;8:e55715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schiess R et al. Tobacco smoke: a risk factor for pulmonary arterial hypertension? A case-control study. Chest. 2010;138:1086–92.

    Article  PubMed  Google Scholar 

  46. Montani D et al. Idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: similarities and differences. Semin Respir Crit Care Med. 2009;30:411–20.

    Article  PubMed  Google Scholar 

  47. Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol. 2011;45:1–15.

    Article  CAS  PubMed  Google Scholar 

  48. Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016;5(4):pii:E45.

    Article  Google Scholar 

  49. Ranchoux B et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131:1006–18.

    Article  CAS  PubMed  Google Scholar 

  50. Yamada M et al. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax. 2005;60:410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burnham EL et al. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med. 2005;172:854–60.

    Article  PubMed  Google Scholar 

  52. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malli F et al. Endothelial progenitor cells in the pathogenesis of idiopathic pulmonary fibrosis: an evolving concept. PLoS One. 2013;8:e53658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smadja DM et al. Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway. Thromb Haemost. 2014;112:1002–13.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moeller A et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179:588–94.

    Article  PubMed  Google Scholar 

  56. Almudéver P et al. Role of tetrahydrobiopterin in pulmonary vascular remodelling associated with pulmonary fibrosis. Thorax. 2013;68:938–48.

    Article  PubMed  Google Scholar 

  57. King TE et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:92–9.

    Article  PubMed  Google Scholar 

  58. Raghu G et al. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42:1622–32.

    Article  CAS  PubMed  Google Scholar 

  59. Raghu G et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158:641–9.

    Article  PubMed  Google Scholar 

  60. Huertas A et al. Pulmonary veno-occlusive disease: advances in clinical management and treatments. Expert Rev Respir Med. 2011;5:217–29. quiz 230–231

    Article  CAS  PubMed  Google Scholar 

  61. Milara J et al. Vascular effects of sildenafil in patients with pulmonary fibrosis and pulmonary hypertension: an ex vivo/in vitro study. Eur Respir J. 2016;47:1737–49.

    Article  PubMed  Google Scholar 

  62. Idiopathic Pulmonary Fibrosis Clinical Research Network et al. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363:620–8.

    Article  Google Scholar 

  63. Han MK et al. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest. 2013;143:1699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Richeldi L et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.

    Article  PubMed  Google Scholar 

  65. Launay D et al. Clinical characteristics and survival in systemic sclerosis-related pulmonary hypertension associated with interstitial lung disease. Chest. 2011;140:1016–24.

    Article  PubMed  Google Scholar 

  66. Le Pavec J et al. Systemic sclerosis-related pulmonary hypertension associated with interstitial lung disease: impact of pulmonary arterial hypertension therapies. Arthritis Rheum. 2011;63:2456–64.

    Article  PubMed  Google Scholar 

  67. Wells AU, Denton CP. Interstitial lung disease in connective tissue disease—mechanisms and management. Nat Rev Rheumatol. 2014;10:728–39.

    Article  CAS  PubMed  Google Scholar 

  68. Le Pavec J, Humbert M, Mouthon L, Hassoun PM. Systemic sclerosis-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;181:1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorfmüller P et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum Pathol. 2007;38:893–902.

    Article  PubMed  Google Scholar 

  70. Overbeek MJ et al. Pulmonary arterial hypertension in limited cutaneous systemic sclerosis: a distinctive vasculopathy. Eur Respir J. 2009;34:371–9.

    Article  CAS  PubMed  Google Scholar 

  71. de Carvalho EF et al. Arterial and interstitial remodelling processes in non-specific interstitial pneumonia: systemic sclerosis versus idiopathic. Histopathology. 2008;53:195–204.

    Article  PubMed  Google Scholar 

  72. Franco de Carvalho E, Parra ER, de Souza R, Muxfeldt A’b Saber A, Capelozzi VL. Parenchymal and vascular interactions in the pathogenesis of nonspecific interstitial pneumonia in systemic sclerosis and idiopathic interstitial pneumonia. Respir Int Rev Thorac Dis. 2008;76:146–53.

    Google Scholar 

  73. De Santis M et al. A vascular endothelial growth factor deficiency characterises scleroderma lung disease. Ann Rheum Dis. 2012;71:1461–5.

    Article  CAS  PubMed  Google Scholar 

  74. Mendoza FA, Piera-Velazquez S, Farber JL, Feghali-Bostwick C, Jiménez SA. Endothelial cells expressing endothelial and mesenchymal cell gene products in lung tissue from patients with systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2016;68:210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valeyre D et al. Sarcoidosis. Lancet Lond Engl. 2014;383:1155–67.

    Article  Google Scholar 

  76. Nunes H et al. Pulmonary hypertension associated with sarcoidosis: mechanisms, haemodynamics and prognosis. Thorax. 2006;61:68–74.

    Article  CAS  PubMed  Google Scholar 

  77. Takemura T et al. Pulmonary vascular involvement in sarcoidosis: granulomatous angiitis and microangiopathy in transbronchial lung biopsies. Virchows Arch A Pathol Anat Histopathol. 1991;418:361–8.

    Article  CAS  PubMed  Google Scholar 

  78. Takemura T, Matsui Y, Saiki S, Mikami R. Pulmonary vascular involvement in sarcoidosis: a report of 40 autopsy cases. Hum Pathol. 1992;23:1216–23.

    Article  CAS  PubMed  Google Scholar 

  79. Rosen Y, Moon S, Huang CT, Gourin A, Lyons HA. Granulomatous pulmonary angiitis in sarcoidosis. Arch Pathol Lab Med. 1977;101:170–4.

    CAS  PubMed  Google Scholar 

  80. Hours S et al. Pulmonary cavitary sarcoidosis: clinico-radiologic characteristics and natural history of a rare form of sarcoidosis. Medicine (Baltimore). 2008;87:142–51.

    Article  Google Scholar 

  81. Rosen Y. Four decades of necrotizing sarcoid granulomatosis: what do we know now? Arch Pathol Lab Med. 2015;139:252–62.

    Article  PubMed  Google Scholar 

  82. Kambouchner M et al. Lymphatic and blood microvasculature organisation in pulmonary sarcoid granulomas. Eur Respir J. 2011;37:835–40.

    Article  CAS  PubMed  Google Scholar 

  83. Vasakova M et al. Bronchoalveolar lavage fluid cellular characteristics, functional parameters and cytokine and chemokine levels in interstitial lung diseases. Scand J Immunol. 2009;69:268–74.

    Article  CAS  PubMed  Google Scholar 

  84. Tolnay E, Kuhnen C, Voss B, Wiethege T, Müller KM. Expression and localization of vascular endothelial growth factor and its receptor flt in pulmonary sarcoidosis. Virchows Arch Int J Pathol. 1998;432:61–5.

    Article  CAS  Google Scholar 

  85. Hoffstein V, Ranganathan N, Mullen JB. Sarcoidosis simulating pulmonary veno-occlusive disease. Am Rev Respir Dis. 1986;134:809–11.

    Article  CAS  PubMed  Google Scholar 

  86. Portier F et al. Sarcoidosis simulating a pulmonary veno-occlusive disease. Rev Mal Respir. 1991;8:101–2.

    CAS  PubMed  Google Scholar 

  87. Jones RM et al. Sarcoidosis-related pulmonary veno-occlusive disease presenting with recurrent haemoptysis. Eur Respir J. 2009;34:517–20.

    Article  CAS  PubMed  Google Scholar 

  88. Reichenberger F et al. Different expression of endothelin in the bronchoalveolar lavage in patients with pulmonary diseases. Lung. 2001;179:163–74.

    Article  CAS  PubMed  Google Scholar 

  89. Terashita K et al. Increased endothelin-1 levels of BAL fluid in patients with pulmonary sarcoidosis. Respirol Carlton Vic. 2006;11:145–51.

    Article  Google Scholar 

  90. Tazi A. Adult pulmonary Langerhans’ cell histiocytosis. Eur Respir J. 2006;27:1272–85.

    Article  CAS  PubMed  Google Scholar 

  91. Basset F et al. Pulmonary histiocytosis X. Am Rev Respir Dis. 1978;118:811–20.

    CAS  PubMed  Google Scholar 

  92. Friedman PJ, Liebow AA, Sokoloff J. Eosinophilic granuloma of lung. Clinical aspects of primary histiocytosis in the adult. Medicine (Baltimore). 1981;60:385–96.

    Article  CAS  Google Scholar 

  93. Travis WD et al. Pulmonary Langerhans cell granulomatosis (histiocytosis X). A clinicopathologic study of 48 cases. Am J Surg Pathol. 1993;17:971–86.

    Article  CAS  PubMed  Google Scholar 

  94. Fartoukh M et al. Severe pulmonary hypertension in histiocytosis X. Am J Respir Crit Care Med. 2000;161:216–23.

    Article  CAS  PubMed  Google Scholar 

  95. Le Pavec J et al. Pulmonary Langerhans cell histiocytosis-associated pulmonary hypertension: clinical characteristics and impact of pulmonary arterial hypertension therapies. Chest. 2012;142:1150–7.

    Article  PubMed  Google Scholar 

  96. Henno P et al. Tobacco-associated pulmonary vascular dysfunction in smokers: role of the ET-1 pathway. Am J Physiol Lung Cell Mol Physiol. 2011;300:L831–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilario Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nunes, H., Dorfmüller, P., Uzunhan, Y., Valeyre, D., Bernaudin, JF., Kambouchner, M. (2017). Pathology of Vascular Changes in Interstitial Lung Diseases. In: Baughman, R., Carbone, R., Nathan, S. (eds) Pulmonary Hypertension and Interstitial Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49918-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49918-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49916-1

  • Online ISBN: 978-3-319-49918-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics