Skip to main content

Causality as a Theoretical Concept

  • Chapter
  • First Online:
Causal Nets, Interventionism, and Mechanisms

Part of the book series: Synthese Library ((SYLI,volume 381))

  • 419 Accesses

Abstract

In the first part of this chapter I finish the axiomatization of the causal nets framework started in Chap. 3 I also argue that the causal Markov axiom provides the best explanation for two statistical phenomena. In the second part I present several results about the empirical content of different versions (i.e., combination of axioms) of the theory of causal nets. Both parts together show that causation satisfies the same modern standards as theoretical concepts of good empirical theories do. This can be seen as new empirical support for the theory of causal nets, but also as an answer to Hume’s skeptical challenge: Actually, it seems that we have good reasons to believe in causation as something ontologically real out there in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Modern philosophers who see causation as subjective are, for example, Spohn (20012006) and Williamson (2005). Spohn explicitly presents causation in a Kantian manner as a projection. I am indebted to Markus Schrenk for pointing this out to me.

  2. 2.

    This constraint is required to distinguish synthetic causal dependencies from analytic dependencies such as dependencies due to meaning, definition, conceptualization, etc.

  3. 3.

    For a more detailed explanation why we would find exactly the mentioned probabilistic dependence and independence relations, see Gebharter (2013, p. 66).

  4. 4.

    I call causal systems satisfying the three mentioned conditions “robustly” producing (or underlying) the corresponding empirical systems since these causal systems presuppose robust (or faithful) probability distributions. In the next subsection, I will also introduce underlying systems for explaining (in)dependencies in empirical systems without robust probability distributions.

References

  • Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. Dordrecht: Springer.

    Book  Google Scholar 

  • Baumgartner, M. (2009). Interventionist causal exclusion and non-reductive physicalism. International Studies in the Philosophy of Science, 23(2), 161–178.

    Article  Google Scholar 

  • Baumgartner, M. (2010). Interventionism and epiphenomenalism. Canadian Journal of Philosophy, 40(3), 359–383.

    Article  Google Scholar 

  • Baumgartner, M., & Casini, L. (2016). An abductive theory of constitution. Philosophy of Science.

    Google Scholar 

  • Baumgartner, M., & Gebharter, A. (2016). Constitutive relevance, mutual manipulability and fat-handedness. British Journal for the Philosophy of Science, 67(3), 731–756.

    Article  Google Scholar 

  • Bechtel, W. (2007). Reducing psychology while maintaining its autonomy via mechanistic explanation. In M. Schouten & H. L. de Jong (Eds.), The matter of the mind: Philosophical essays on psychology, neuroscience, and reduction (pp. 172–198). Oxford: Blackwell.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 421–441.

    Article  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (2000). Discovering complexity: Decomposition and localization as scientific research strategies. Princeton: Princeton University Press.

    Google Scholar 

  • Beebee, H., Hitchcock, C., & Menzies, P (Eds.). (2009). The Oxford handbook of causation. Oxford: Oxford University Press.

    Google Scholar 

  • Blalock, H. M. (1961). Correlation and causality: The multivariate case. Social Forces, 39(3), 246–251.

    Article  Google Scholar 

  • Campbell, J. (2007). An interventionist approach to causation in psychology. In A. Gopnik & L. E. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 58–66). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Carnap, R. (1928/2003). The logical structure of the world and pseudoproblems in philosophy. Chicago: Open Court.

    Google Scholar 

  • Carnap, R. (1956). The methodological character of theoretical concepts. In H. Feigl & M. Scriven (Eds.), The foundations of science and the concepts of psychology and psychoanalysis (pp. 38–76). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Cartwright, N. (1979). Causal laws and effective strategies. Noûs, 13(4), 419–437.

    Article  Google Scholar 

  • Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Oxford University Press.

    Google Scholar 

  • Cartwright, N. (1999a). Causal diversity and the Markov condition. Synthese, 121(1/2), 3–27.

    Google Scholar 

  • Cartwright, N. (1999b). The dappled world. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cartwright, N. (2001). What is wrong with Bayes nets? The Monist, 84(2), 242–264.

    Article  Google Scholar 

  • Cartwright, N. (2007). Hunting causes and using them. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Casini, L. (2016). How to model mechanistic hierarchies. Philosophy of Science, 83(5), 946–958.

    Article  Google Scholar 

  • Casini, L., lllari, P. M., Russo, F., & Williamson, J. (2011). Models for prediction, explanation and control: Recursive Bayesian networks. Theoria – An International Journal for Theory, History and Foundations of Science, 26(70), 5–33.

    Google Scholar 

  • Clarke, B., Leuridan, B., & Williamson, J. (2014). Modelling mechanisms with causal cycles. Synthese, 191(8), 1651–1681.

    Article  Google Scholar 

  • Collingwood, R. G. (2002). In R. Martin (Ed.), An essay on metaphysics. Oxford: Clarendon Press.

    Google Scholar 

  • Craver, C. (2007a). Constitutive explanatory relevance. Journal of Philosophical Research, 32, 3–20.

    Google Scholar 

  • Craver, C. (2007b). Explaining the brain. Oxford: Clarendon Press.

    Google Scholar 

  • Craver, C., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22(4), 547–563.

    Article  Google Scholar 

  • Danks, D., & Plis, S. (2015). Learning causal structure from undersampled time series. In JMLR: Workshop and Conference Proceedings, Hong Kong.

    Google Scholar 

  • Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological), 41(1), 1–31.

    Google Scholar 

  • Dowe, P. (2007). Physical causation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Eberhardt, F., & Scheines, R. (2007). Interventions and causal inference. Philosophy of Science, 74(5), 981–995.

    Article  Google Scholar 

  • Eells, E. (1987). Probabilistic causality: Reply to John Dupré. Philosophy of Science, 54(1), 105–114.

    Article  Google Scholar 

  • Eells, E., & Sober, E. (1983). Probabilistic causality and the question of transitivity. Philosophy of Science, 50(1), 35–57.

    Article  Google Scholar 

  • Eronen, M. I. (2011). Reduction in philosophy of mind. Heusenstamm: De Gruyter.

    Book  Google Scholar 

  • Eronen, M. I. (2012). Pluralistic physicalism and the causal exclusion argument. European Journal for Philosophy of Science, 2(2), 219–232.

    Article  Google Scholar 

  • Fagan, M. (2013). Philosophy of stem cell biology. Basingstoke: Palgrave Macmillan.

    Book  Google Scholar 

  • Fazekas, P., & Kertesz, G. (2011). Causation at different levels: Tracking the commitments of mechanistic explanations. Biology and Philosophy, 26(3), 365–383.

    Article  Google Scholar 

  • French, S. (2008). The structure of theories. In S. Psillos & M. Curd (Eds.), The Routledge companion to philosophy of science (pp. 269–280). London: Routledge.

    Google Scholar 

  • Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy, 71(1), 5–19.

    Article  Google Scholar 

  • Gasking, D. (1955). Causation and recipes. Mind, 64(256), 479–487.

    Article  Google Scholar 

  • Gebharter, A. (2013). Solving the flagpole problem. Journal for General Philosophy of Science, 44(1), 63–67.

    Article  Google Scholar 

  • Gebharter, A. (2014). A formal framework for representing mechanisms? Philosophy of Science, 81(1), 138–153.

    Article  Google Scholar 

  • Gebharter, A. (2015). Causal exclusion and causal Bayes nets. Philosophy and Phenomenological Research. doi: 10.1111/phpr.12247.

    Google Scholar 

  • Gebharter, A. (2016). Another problem with RBN models of mechanisms. Theoria – An International Journal for Theory, History and Foundations of Science, 31(2), 177–188.

    Article  Google Scholar 

  • Gebharter, A., & Kaiser, M. I. (2014). Causal graphs and biological mechanisms. In M. I. Kaiser, O. R. Scholz, D. Plenge, & A. Hüttemann (Eds.), Explanation in the special sciences (pp. 55–85). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gebharter, A., & Schurz, G. (2014). How Occam’s razor provides a neat definition of direct causation. In J. M. Mooij, D. Janzing, J. Peters, T. Claassen, & A. Hyttinen (Eds.), Proceedings of the UAI workshop Causal Inference: Learning and Prediction, Aachen.

    Google Scholar 

  • Gebharter, A., & Schurz, G. (2016). A modeling approach for mechanisms featuring causal cycles. Philosophy of Science, 83(5), 934–945.

    Article  Google Scholar 

  • Glauer, R. D. (2012). Emergent mechanisms. Münster: Mentis.

    Book  Google Scholar 

  • Glennan, S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44(1), 49–71.

    Article  Google Scholar 

  • Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(3), S342–S353.

    Article  Google Scholar 

  • Glennan, S. (2009). Mechanisms. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 315–325). Oxford: Oxford University Press.

    Google Scholar 

  • Glymour, C. (2004). Critical notice. British Journal for the Philosophy of Science, 55(4), 779–790.

    Article  Google Scholar 

  • Glymour, C., Spirtes, P., & Scheines, R. (1991). Causal inference. Erkenntnis, 35(1/3), 151–189.

    Google Scholar 

  • Good, I. J. (1959). A theory of causality. British Journal for the Philosophy of Science, 9(36), 307–310.

    Article  Google Scholar 

  • Graßhoff, G., & May, M. (2001). Causal regularities. In W. Spohn, M. Ledwig, & M. Esfeld (Eds.), Current issues in causation (pp. 85–114). Paderborn: Mentis.

    Google Scholar 

  • Grünbaum, A. (1962). Temporally-asymmetric principles, parity between explanation and prediction, and mechanism versus teleology. Philosophy of Science, 29(2), 146–170.

    Article  Google Scholar 

  • Harbecke, J. (2015). The regularity theory of mechanistic constitution and a methodology for constitutive inference. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 54, 10–19.

    Article  Google Scholar 

  • Hausman, D. (1998). Causal asymmetries. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Healey, R. (2009). Causation in quantum mechanics. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation. Oxford: Oxford University Press.

    Google Scholar 

  • Hempel, C. G. (1958). The theoretician’s dilemma. In C. G. Hempel (Ed.), Aspects of scientific explanation and other essays in the philosophy of science (pp. 173–228). New York: Free Press.

    Google Scholar 

  • Hitchcock, C. (2010). Probabilistic causation. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Retrieved from https://plato.stanford.edu/archives/win2010/entries/causation-probabilistic/

  • Hitchcock, C., & Woodward, J. (2003). Explanatory generalizations, part II: Plumbing explanatory depth. Noûs, 37(2), 181–199.

    Article  Google Scholar 

  • Hoover, K. D. (2001). Causality in macroeconomics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hume, D. (1738/1975). A treatise of human nature. Oxford: Clarendon Press.

    Google Scholar 

  • Hume, D. (1748/1999). An enquiry concerning human understanding. Oxford: Oxford University Press.

    Google Scholar 

  • Illari, P. M., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for the Philosophy of Science, 2(1), 119–135.

    Article  Google Scholar 

  • Kaplan, D. M. (2012). How to demarcate the boundaries of cognition. Biology and Philosophy, 27(4), 545–570.

    Article  Google Scholar 

  • Kistler, M. (2009). Mechanisms and downward causation. Philosophical Psychology, 22(5), 595–609.

    Article  Google Scholar 

  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 410–505). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Korb, K., Hope, L. R., Nicholson, A. E., & Axnick, K. (2004). Varieties of causal intervention. In Pricai 2004: Trends in Artificial Intelligence, Proceedings (Vol. 3157, pp. 322–331). Berlin: Springer

    Google Scholar 

  • Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks, 20(5), 491–505.

    Article  Google Scholar 

  • Leuridan, B. (2012). Three problems for the mutual manipulability account of constitutive relevance in mechanisms. British Journal for the Philosophy of Science, 63(2), 399–427.

    Article  Google Scholar 

  • Lewis, D. (1970). How to define theoretical terms. Journal of Philosophy, 67(13), 427–446.

    Article  Google Scholar 

  • Lewis, D. (1973). Causation. Journal of Philosophy, 70(17), 556–567.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Mackie, J. L. (1965). Causes and conditions. American Philosophical Quarterly, 2(4), 245–264.

    Google Scholar 

  • Mackie, J. L. (1974). The cement of the universe. Oxford: Clarendon Press.

    Google Scholar 

  • McLaughlin, B., & Bennett, K. (2011). Supervenience. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Retrieved from https://plato.stanford.edu/archives/win2011/entries/supervenience/

  • Menzies, P., & Price, H. (1993). Causation as a secondary quality. British Journal for the Philosophy of Science, 44(2), 187–203.

    Article  Google Scholar 

  • Murphy K. P. (2002). Dynamic Bayesian networks. UC Berkeley, Computer Science Division.

    Google Scholar 

  • Murray-Watters, A., & Glymour, C. (2015). What is going on inside the arrows? Discovering the hidden springs in causal models. Philosophy of Science, 82(4), 556–586.

    Article  Google Scholar 

  • Näger, P. M. (2016). The causal problem of entanglement. Synthese, 193(4), 1127–1155.

    Article  Google Scholar 

  • Neapolitan, R. E. (1990). Probabilistic reasoning in expert systems. New York: Wiley.

    Google Scholar 

  • Neapolitan, R. E. (2003). Learning Bayesian networks. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Norton, J. D. (2009). Is there an independent principle of causality in physics? British Journal for the Philosophy of Science, 60(3), 475–486.

    Article  Google Scholar 

  • Nyberg, E., & Korb, K. (2006). Informative interventions. Technical Report 2006/204, School of Computer Science, Monash University.

    Google Scholar 

  • Papineau, D. (1996). Theory-dependent terms. Philosophy of Science, 63(1), 1–20.

    Article  Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.

    Article  Google Scholar 

  • Pearl, J. (2000). Causality (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pearl, J., & Dechter, R. (1996). Identifying independencies in causal graphs with feedback. In UAI’96: Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence (pp. 420–426). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J., & Paz, A. (1985). Graphoids: A graph-based logic for reasoning about relevance relations. UCLA Computer Science Department Technical Report 850038. Advances in Artificial Intelligence-II.

    Google Scholar 

  • Pearl, J., Verma, T., & Geiger, D. (1990). Identifying independence in Bayesian networks. Networks, 20(5), 507–534.

    Article  Google Scholar 

  • Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy of Science 42(2), 157–176.

    Article  Google Scholar 

  • Psillos, S. (2009). Regularity theories. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 131–157). Oxford: Oxford University Press.

    Google Scholar 

  • Raatikainen, P. (2010). Causation, exclusion, and the special sciences. Erkenntnis, 73(3), 349–363.

    Article  Google Scholar 

  • Ramsey J., Gazis, P., Roush, T., Spirtes, P., & Glymour, C. (2002). Automated remote sensing with near infrared reflectance spectra: Carbonate recognition. Data Mining and Knowledge Discovery, 6(3), 277–293.

    Article  Google Scholar 

  • Reichenbach, H. (1935/1971). The theory of probability. Berkeley: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1956/1991). The direction of time. Berkeley: University of California Press.

    Google Scholar 

  • Reutlinger, A. (2012). Getting rid of interventions. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(4), 787–795.

    Article  Google Scholar 

  • Richardson, T. (2009). A factorization criterion for acyclic directed mixed graphs. In J. Bilmes & A. Ng (Eds.), Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal (pp. 462–470). AUAI Press.

    Google Scholar 

  • Richardson, T., & Spirtes, P. (2002). Ancestral graph Markov models. Annals of Statistics, 30(4), 962–1030.

    Article  Google Scholar 

  • Russell, B. (1912). On the notion of cause. Proceedings of the Aristotelian Society, 13, 1–26.

    Google Scholar 

  • Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.

    Google Scholar 

  • Salmon, W. (1997). Causality and explanation. New York: Oxford University Press.

    Google Scholar 

  • Schurz, G. (2001). Causal asymmetry independent versus dependent variables, and the direction of time. In W. Spohn, M. Ledwig, & M. Esfeld (Eds.), Current issues in causation (pp. 47–67). Paderborn: Mentis.

    Google Scholar 

  • Schurz, G. (2008). Patterns of abduction. Synthese, 164(2), 201–234.

    Article  Google Scholar 

  • Schurz, G. (2013). Philosophy of science: A unified approach. New York: Routledge.

    Google Scholar 

  • Schurz, G. (2015). Causality and unification: How causality unifies statistical regularities. Theoria – An International Journal for Theory, History and Foundations of Science, 30(1), 73–95.

    Article  Google Scholar 

  • Schurz, G. (in press). Interactive causes: Revising the Markov condition. Philosophy of Science.

    Google Scholar 

  • Schurz, G., & Gebharter, A. (2016). Causality as a theoretical concept: Explanatory warrant and empirical content of the theory of causal nets. Synthese, 193(4), 1073–1103.

    Article  Google Scholar 

  • Shapiro, L. A. (2010). Lessons from causal exclusion. Philosophy and Phenomenological Research, 81(3), 594–604.

    Article  Google Scholar 

  • Shapiro, L. A., & Sober, E. (2007). Epiphenomenalism – The Do’s and the Don’ts. In G. Wolters & P. Machamer (Eds.), Studies in causality: Historical and contemporary (pp. 235–264). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Skyrms, B. (1980). Causal necessity: A pragmatic investigation of the necessity of laws. New Haven: Yale University Press.

    Google Scholar 

  • Sneed, J. D. (1979). The logical structure of mathematical physics. Dordrecht: Reidel.

    Book  Google Scholar 

  • Soom, P. (2011). From psychology to neuroscience. Frankfurt: Ontos.

    Book  Google Scholar 

  • Soom, P. (2012). Mechanisms, determination and the metaphysics of neuroscience. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(3), 655–664.

    Article  Google Scholar 

  • Spirtes, P. (1995). Directed cyclic graphical representations of feedback models. In P. Besnard & S. Hanks (Eds.), Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (pp. 491–498). San Francisco: Morgan Kaufman.

    Google Scholar 

  • Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search (1st ed.). Dordrecht: Springer.

    Book  Google Scholar 

  • Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Spirtes, P., Meek, C., & Richardson, T. (1999). An algorithm for causal inference in the presence of latent variables and selection bias. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (pp. 499–506). San Francisco: Morgan Kaufman.

    Google Scholar 

  • Spohn, W. (2001). Bayesian nets are all there is to causal dependence. In M. C. Galavotti, D. Costantini, & P. Suppes (Eds.), Stochastic dependence and causality (pp. 157–172). Stanford: CSLI Publications.

    Google Scholar 

  • Spohn, W. (2006). Causation: An alternative. British Journal for the Philosophy of Science, 57(1), 93–119.

    Article  Google Scholar 

  • Steel, D. (2005). Indeterminism and the causal Markov condition. British Journal for the Philosophy of Science, 56(1), 3–26.

    Article  Google Scholar 

  • Steel, D. (2006). Homogeneity, selection, and the faithfulness condition. Minds and Machines, 16(3), 303–317.

    Article  Google Scholar 

  • Strevens, M. (2007). Review of Woodward making things happen. Philosophy and Phenomenological Research, 74(1), 233–249.

    Article  Google Scholar 

  • Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North-Holland.

    Google Scholar 

  • Tian, J., & Pearl, J. (2002). A general identification condition for causal effects. In AAAI-Proceedings, Edmonton (pp. 567–573). AAAI/IAAI.

    Google Scholar 

  • Tomasello, M. (2009). The cultural origins of human cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Verma, T. (1987). Causal networks: Semantics and expressiveness. Technical Report, Cognitive Systems Laboratory, University of California.

    Google Scholar 

  • von Wright, G. (1971). Explanation and understanding. Ithaca: Cornell University Press.

    Google Scholar 

  • Williamson, J. (2005). Bayesian nets and causality. Oxford: Oxford University Press.

    Google Scholar 

  • Williamson, J. (2009). Probabilistic theories of causality. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 185–212). Oxford: Oxford University Press.

    Google Scholar 

  • Williamson, J., & Gabbay D. (2005). Recursive causality in Bayesian networks and self-fibring networks. In D. Gillies (Ed.), Laws and models in the sciences (pp. 173–221). London: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69(3), S366–S377.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen. Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2008a). Mental causation and neural mechanisms. In J. Hohwy & J. Kallestrup (Eds.), Being reduced (pp. 218–262). Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2008b). Response to Strevens. Philosophy and Phenomenological Research, 77(1), 193–212.

    Google Scholar 

  • Woodward, J. (2009). Agency and interventionist theories. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 234–262). Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2011a). Causation and manipulability. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Retrieved from https://plato.stanford.edu/archives/win2011/entries/causation-mani/

  • Woodward, J. (2011b). Scientific explanation. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Retrieved from https://plato.stanford.edu/archives/win2011/entries/scientific-explanation/

  • Woodward, J. (2013). Mechanistic explanation: Its scope and limits. Aristotelian Society Supplementary, 87(1), 39–65.

    Article  Google Scholar 

  • Woodward, J. (2015). Interventionism and causal exclusion. Philosophy and Phenomenological Research, 91(2), 303–347.

    Article  Google Scholar 

  • Woodward, J., & Hitchcock, C. (2003). Explanatory generalizations, part I: A counterfactual account. Noûs, 37(1), 1–24.

    Article  Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal for Agricultural Research, 20(7), 557–585.

    Google Scholar 

  • Zhang, J. (2008). Causal reasoning with ancestral graphs. Journal of Machine Learning Research, 9, 1437–1474.

    Google Scholar 

  • Zhang, J., & Spirtes, P. (2008). Detection of unfaithfulness and robust causal inference. Minds and Machines 18(2), 239–271.

    Article  Google Scholar 

  • Zhang, J., & Spirtes, P. (2011). Intervention, determinism, and the causal minimality condition. Synthese, 182(3), 335–347.

    Article  Google Scholar 

  • Zhang, J., & Spirtes, P. (2016). The three faces of faithfulness. Synthese, 193(4), 1011–1027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gebharter, A. (2017). Causality as a Theoretical Concept. In: Causal Nets, Interventionism, and Mechanisms. Synthese Library, vol 381. Springer, Cham. https://doi.org/10.1007/978-3-319-49908-6_4

Download citation

Publish with us

Policies and ethics