Skip to main content

Reconstruction of Coastline Changes by the Comparisons of Historical Maps at the Pomeranian Bay, Southern Baltic Sea

  • Chapter
  • First Online:
Coastline Changes of the Baltic Sea from South to East

Abstract

Coastline changes are becoming an increasingly important topic along with continuously rising sea level and an increase in extreme storm events. This holds at the southern Baltic Sea coast where eustatic change, glacio-isostatic land subsidence, and strong storms events cause at most parts a continuous coastal retreat. The coastline changes at the time scale of decadal to centennial are the long-term accumulative effect of climate forces, meanwhile anthropogenic influences have to be taken into consideration as well. From a set of historical maps covering almost 300 years, in particular the “Messtischblatt” maps (starting with 1829 AD) provide the condition to be geo-referenced for quantitative comparisons with modern Digital Elevation Models. The accuracy of these maps is quantified by using the Root Mean Square Error of spatial differences of fixed points between the modern aerial photographs and historical maps. A first-order polynomial transformation is chosen to geo-reference the maps. The comparisons between historical maps and the modern coastline derived from a Digital Elevation Model indicate that the coast can be subdivided into four zones (types) in terms of the trend of coastline changes: A continuously retreating (A-) or advancing coastline (A+); B relatively stable coastline (coastline changes are within the accuracy error bars); C anthropogenically influenced coastline changes; D randomly changing coastline. This classification is found to coincide with the mean coastline geodetic orientations and the gradient of alongshore sediment transport capacity. This remarkable coincidence confirms the reliability of the reconstructed coastline changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bärring L, von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31:L20202. doi:10.1029/2004GL020441

    Article  Google Scholar 

  • Brovelli M, Zamboni G (2004) Adaptive transformations of cartographic bases by means of multiresolutions spline interpolation. XXth ISPRS congress, commision 2. ISSN 1682-1750, vol XXXV, part B2. 206–211

    Google Scholar 

  • Brunel C, Sabatier F (2009) Potential influence of sea-level rise in controlling shoreline position on the French Mediterranean Coast. Geomorphology 107:47–57

    Article  Google Scholar 

  • Cieślak A (1995) Contemporary coastal transformation – the coastal management and protection aspect. In: Rotnicki K (ed) Polish coast- past, present and future. Sp. Is. J Coast Res 22:63–71

    Google Scholar 

  • Deng J, Zhang W, Harff J, Schneider R, Dudzinska-Nowak J, Terefenko P, Furmańczyk K (2014) A numerical approach for approximating the historical morphology of wave-dominated coasts – a case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204:425–443

    Article  Google Scholar 

  • Deng J, Harff J, Schimanke S, Meier M (2015) A method for estimating coastline recession due to sea level rise by assuming stationary wind-wave climate. Oceanol Hydrobiol Stud 44(3):362–380

    Article  Google Scholar 

  • Dudzinska-Nowak J (2006a) Zmiennosc morfologii strefy brzegowej jako wskaznik tendencji rozwojowych brzegu (Variability of the coastal zone morphology as a indicator of the coastline tendency development). Doctoral thesis, Szczecin University, pp 226

    Google Scholar 

  • Dudzinska-Nowak J (2006b) Coastline long-term changes of the selected area of the Pomeranian Bay. In: Tubilewicz A (ed) Coastal dynamic geomorphology and protection. Eurocoast, Gdańsk, pp 163–170

    Google Scholar 

  • Dudzinska-Nowak J (2015) Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938–2011 (Coastal protection methods used along Western Poland (southern Baltic Sea) and the subsequent shoreline effects (1938–2011). University of Szczecin, pp 171

    Google Scholar 

  • Ekman M (2007) A secular change in storm activity over the Baltic Sea detected through analysis of sea level data. Small Publications in Historical Geophysics 16, Summer institute for historical geophysics,, Bomarsund, Åland Islands

    Google Scholar 

  • Engelmann G (1968) Die Kartographen und Kartenbearbeiter der Preußischen Urmeßtischblätter. In: Kartengeschichte und Kartenbearbeitung (Festschrift für W. Bonacker), Bad Godesberg, pp 227–232

    Google Scholar 

  • Furmańczyk K, Musielak S, Prajs J (1991) Remote sensing characteristics of dynamics of the Hel Peninsula Fragment of Shoreline. In: Proceedings of EARSeL 11th Symposium, Austria, Graz, pp 208–215

    Google Scholar 

  • Furmańczyk K, Dudzińska-Nowak J (2009) Effects of extreme storms on coastline changes: a southern Baltic example. J Coast Res 2009:1637–1640

    Google Scholar 

  • Furmańczyk KK, Dudzińska-Nowak J, Furmanczyk KA, Paplinska-Swerpel B, Brzezowska N (2012) Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit, Poland. Geomorphology 143-144:62–68. doi:10.1016/j.geomorph.2011.09.007

    Article  Google Scholar 

  • Gaspari AC, Hassel G, Cannabich JGF (1819) Vollständiges Handbuch der neuesten Erdbeschreibung. Verlag des Geographischen Instituts, Weimar, p 173

    Google Scholar 

  • Gauss KF (1825) Allgemeine Auflösung der Aufgabe: die Theile einer gegebnen Fläche auf einer andern gegebnen Fläche so abzubilden, daß die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich wird. Preisarbeit der Kopenhagener Akademie,1822. Schumacher Astronomische Abhandlungen, Altona 3:5–30. [Reprinted, 1894, Ostwald’s Klassiker der Exakten Wissenschaften, no. 55: Leipzig, Wilhelm Engelmann, p 57–81, with editing by Albert Wangerin, pp 97–101. Also in Herausgegeben von der Gesellschaft der Wissenschaften zu Göttingen in Kommission bei Julius Springer in Berlin, 1929, 12:1–9

    Google Scholar 

  • Harff J, Lüth F (eds) (2007) Sinking coasts – geosphere ecosphere and anthroposphere of the holocene Southern Baltic Sea. Ber d Römisch-Germanischen Kommission

    Google Scholar 

  • Harff J, Meyer M (2011) Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the Southern Baltic. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin. Springer, Berlin/Heidelberg, pp 149–164

    Chapter  Google Scholar 

  • Hoffmann L (1861) Mathematisches Wörterbuch, Band 3. Verlag Gustav Bosselmann, Berlin, p 144

    Google Scholar 

  • IPCC (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013 (1535). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jahnke W, Lampe R (1993) Monographische Darstellung der subrezenten, historischen und prognostischen Küstenentwicklung der Außenküste Mecklenburg – Vorpommerns auf der Grundlage derzeit verfügbarer Daten und Untersuchungsergebnisse. Unveröffentl. Studie, Greifswald/ Hinrichshagen, p 37

    Google Scholar 

  • James LA, Hodgson ME, Ghoshal S, Latiolais MM (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137:181–198. doi:10.1016/j.geomorph.2010.10.039

    Article  Google Scholar 

  • Kohlhase S, Frohle P, Koppe B (1999) LIMNOLOGICA coastal protection of the Isle of usedom – conceptional design of an offshore breakwater system at the Streckelsberg, Baltic Sea conceptional considerations. Limnologica 29:325–331

    Article  Google Scholar 

  • Krüger L (1912) Konforme Abbildung des Erdellipsoids in der Ebene. Royal Prussian Geodetic Institute, New Series 52

    Google Scholar 

  • Labuz T, Kowalewska-Kalkowska H (2011) Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim Res 48:93–101

    Article  Google Scholar 

  • Le Cozannet G, Garcin M, Yates M, Idier D, Meyssignac B (2014) Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth-Sci Rev 138:47–60. doi:10.1016/j.earscirev.2014.08.005

    Article  Google Scholar 

  • Meyer HI (ed) (1867) Ergänzungsblätter zur Kenntnis der Gegenwart. Verlag des Biblographischen Institutes, Hildburghausen 89

    Google Scholar 

  • Richter A, Groh A, Dietrich R (2012) Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys Chem Earth Parts A/B/C 53–54:43–53

    Article  Google Scholar 

  • Schleinert D (2005) Die Geschichte der Insel Usedom. Hinstorff, Rostock. ISBN 3-356-01081-6, p 97

    Google Scholar 

  • U.S. Army Corps of Engineers (1984) Shore protection manual, 4th edn. Department of the Army, U.S. Corps of Engineers, Washington, DC

    Google Scholar 

  • Zawadzka E (1999) Development tendencies of the Polish south Baltic coast (in Polish). GTN Gdansk, pp 147

    Google Scholar 

  • Zeidler RB, Woblewski A, Mietus M, Dziaddziuszko Z, Cyperski J (1995) Wind, wave, and storm surge regime at the Polish Baltic coast. J Coastal Res Spec Issue 22:33–55

    Google Scholar 

  • Zeune A (1844) Die drei Stufen der Erdkunde für Höhere und Niedere Schulen. Verlag Theodor Christoph Enslin, Berlin, p 2

    Google Scholar 

  • Zhang W, Harff J, Schneider R, Wu C (2010) Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60:1085–1114. doi:10.1007/s10236-010-0311-5

    Google Scholar 

  • Zhang W, Deng J, Harff J, Schneider R, Dudzinska-Nowak J (2013) A coupled modeling scheme for longshore sediment transport of wave-dominated coasts – a case study from the southern Baltic Sea. Coast Eng 72:39–55

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the COPAF project funded by the Ministry of Science and Higher Education in Poland, the Baltic Network project funded by the University of Greifswald, Germany and the research grant (No. DEC-2011/01/N/ST10/07531) awarded by the National Science Centre (in Polish: Narodowe Centrum Nauki, NCN). The historical maps used in this study are provided by the University of Greifswald and the University of Adam Mickiewicz in Poznan. We thank Prof. Hua Zhang, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences and Prof. Hans von Storch, Helmholtz Centrum Geesthacht for providing constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deng, J. et al. (2017). Reconstruction of Coastline Changes by the Comparisons of Historical Maps at the Pomeranian Bay, Southern Baltic Sea. In: Harff, J., Furmańczyk, K., von Storch, H. (eds) Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_13

Download citation

Publish with us

Policies and ethics