Skip to main content

An Approach to Building Musical Bioprocessors with Physarum polycephalum Memristors

  • Chapter
  • First Online:
Guide to Unconventional Computing for Music

Abstract

This chapter presents an account of our investigation into developing musical processing devices using biological components. Such work combines two vibrant areas of unconventional computing research: Physarum polycephalum and the memristor. P. polycephalum is a plasmodial slime mould that has been discovered to display behaviours that are consistent with that of the memristor : a hybrid memory and processing component. Within the chapter, we introduce the research’s background and our motives for undertaking the study. Then, we demonstrate P. polycephalum’s memristive abilities and present our approach to enabling its integration into analogue circuitry. Following on, we discuss different techniques for using P. polycephalum memristors to generate musical responses .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.carolina.com Last Accessed: 28 August 2016.

  2. 2.

    https://www.lulzbot.com/ Last Accessed: 28 August 2016.

  3. 3.

    http://www.autodesk.co.uk/ Last Accessed: 28 August 2016.

  4. 4.

    http://functionalize.com/ Last Accessed: 28th August 2016.

References

  • Adamatzky, A. (2010). Physarum machines: Computers from slime mould, Vol. 74. World Scientific.

    Google Scholar 

  • Adamatzky, A. (2012). Bioevaluation of world transport networks. World Scientific.

    Google Scholar 

  • Adamatzky, A. (2013). Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Organic Electronics, 14(12), 3355–3361.

    Article  Google Scholar 

  • Adamatzky, A. (2015). Thirty eight things to do with live slime mould. arXiv preprint arXiv:1512.08230

  • Adamatzky, A., de Lacy Costello, B., Melhuish, C., & Ratcliffe, N. (2003). Experimental reaction–diffusion chemical processors for robot path planning. Journal of Intelligent and Robotic Systems, 37(3), 233–249.

    Article  MATH  Google Scholar 

  • Adamatzky, A., & Jones, J. (2011). On electrical correlates of Physarum polycephalum spatial activity: Can we see physarum machine in the dark? Biophysical Reviews and Letters, 6(01n02), 29–57.

    Google Scholar 

  • Adamatzky, A., Jones, J., Mayne, R., Tsuda, S., & Whiting, J. (2016). Logical gates and circuits implemented in slime mould. In Advances in Physarum Machines. Springer, pp. 37–74.

    Google Scholar 

  • Adamatzky, A., & Schubert, T. (2014). Slime mold microfluidic logical gates. Materials Today, 17(2), 86–91.

    Article  Google Scholar 

  • Braund, E., & Miranda, E. (2015a). Biocomputer music: Generating musical responses with Physarum polycephalum-based memristors. Computer Music Multidisciplinary Research (CMMR): Music, Mind and Embodiment. Plymouth, UK.

    Google Scholar 

  • Braund, E., & Miranda, E. (2015b). Music with unconventional computing: Towards a step sequencer from plasmodium of Physarum polycephalum. In Evolutionary and Biologically Inspired Music, Sound, Art and Design. Springer, pp. 15–26.

    Google Scholar 

  • Braund, E., & Miranda, E. (In Press). On building practical biocomputers for real-world applications: Receptacles for culturing slime mould memristors and component standardisation. Journal of Bionic Engineering.

    Google Scholar 

  • Braund, E., Sparrow, R., & Miranda, E. (2016). Physarum-based memristors for computer music. In Advances in Physarum Machines. Springer, pp. 755–775.

    Google Scholar 

  • Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  • Chua, L. O. (2015). Everything you wish to know about memristors but are afraid to ask. Radioengineering, 24(2), 319.

    Article  Google Scholar 

  • Coggin, S. J., & Pazun, J. L. (1996). Dynamic complexity in Physarum polycephalum shuttle streaming. Protoplasma, 194(3–4), 243–249.

    Article  Google Scholar 

  • Doornbusch, P. (2009). The Oxford handbook of computer music, Oxford University Press, chapter Early Hardware and Easy Ideas in Computer Music: Their Development and Their Current Forms.

    Google Scholar 

  • Gale, E., Adamatzky, A., & Costello, B. (2013a). Slime mould memristors. BioNanoScience, 5(1), 1–8.

    Article  Google Scholar 

  • Gale, E., Costello, B., & Adamatzky, A. (2014). Spiking in memristor networks. Cham: Springer, pp. 365–387. http://dx.doi.org/10.1007/978-3-319-02630-5_17

  • Gale, E., Matthews, O., Costello, B. D. L., & Adamatzky, A. (2013). Beyond markov chains, towards adaptive memristor network-based music generation. arXiv preprint arXiv:1302.0785

  • Gotoh, K., & Kuroda, K. (1982). Motive force of cytoplasmic streaming during plasmodial mitosis of Physarum polycephalum. Cell Motility, 2(2), 173–181.

    Article  Google Scholar 

  • Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly (lactic acid) fiber: An overview. Progress in Polymer Science, 32(4), 455–482.

    Article  Google Scholar 

  • Guy, R. D., Nakagaki, T., & Wright, G. B. (2011). Flow-induced channel formation in the cytoplasm of motile cells. Physical Review E, 84(1), 016310.

    Article  Google Scholar 

  • Howard, G., Gale, E., Bull, L., de Lacy Costello, B., & Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computation, 16(5), 711–729.

    Article  Google Scholar 

  • Linares-Barranco, B., & Serrano-Gotarredona, T. (2009). Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature precedings, 1, 2009.

    Google Scholar 

  • Miranda, E. Biocomputer music. http://tinyurl.com/kszgm3r. Last Accessed February 12, 2015.

  • Miranda, E. R. (2000). Readings in music and artificial intelligence, Vol. 20. Routledge.

    Google Scholar 

  • Nakagaki, T., Yamada, H., & Tóth, Á. (2000). Intelligence: Maze-solving by an amoeboid organism. Nature, 407(6803), 470–470.

    Article  Google Scholar 

  • Pershin, Y. V., Di La Fontaine, S., & Ventra, M. (2009). Memristive model of amoeba learning. Physical Review E, 80(2), 021926.

    Article  Google Scholar 

  • Romeo, A., Dimonte, A., Tarabella, G., D’Angelo, P., Erokhin, V., & Iannotta, S. (2015). A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL materials, 3(1), 014909.

    Article  Google Scholar 

  • Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Review Letters, 100(1), 018101.

    Article  Google Scholar 

  • Schuster, A., & Yamaguchi, Y. (2011). From foundational issues in artificial intelligence to intelligent memristive nano-devices. International Journal of Machine Learning and Cybernetics, 2(2), 75–87.

    Article  Google Scholar 

  • Shu, J.-J., Wang, Q.-W., Yong, K.-Y., Shao, F., & Lee, K. J. (2015). Programmable dna-mediated multitasking processor. The Journal of Physical Chemistry B, 119(17), 5639–5644.

    Article  Google Scholar 

  • Snider, G. S. (2008). Spike-timing-dependent learning in memristive nanodevices. In 2008 IEEE international symposium on nanoscale architectures (pp. 85–92). IEEE.

    Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Article  Google Scholar 

  • Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., et al. (2015). A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chemical Science, 6(5), 2859–2868.

    Article  Google Scholar 

  • Tsuda, S., Zauner, K.-P., & Gunji, Y.-P. (2007). Robot control with biological cells. Biosystems, 87(2), 215–223.

    Article  Google Scholar 

  • Versace, M., & Chandler, B. (2010). The brain of a new machine. IEEE Spectrum, 47(12), 30–37.

    Article  Google Scholar 

  • Whiting, J. G., Costello, B. P., & Adamatzky, A. (2014). Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems, 124, 21–25.

    Article  Google Scholar 

  • Wohlfarth-Bottermann, K. (1979). Oscillatory contraction activity in physarum. The Journal of experimental biology, 81(1), 15–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo R. Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Braund, E., Miranda, E.R. (2017). An Approach to Building Musical Bioprocessors with Physarum polycephalum Memristors. In: Miranda, E. (eds) Guide to Unconventional Computing for Music. Springer, Cham. https://doi.org/10.1007/978-3-319-49881-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49881-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49880-5

  • Online ISBN: 978-3-319-49881-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics