Skip to main content

Memristor in a Nutshell

  • Chapter
  • First Online:
Guide to Unconventional Computing for Music
  • 1118 Accesses

Abstract

For almost 150 years, the capacitor (discovered in 1745), the resistor (1827) and the inductor (1831) have been the only fundamental passive devices known and have formed the trinity of fundamental passive circuit elements, which, together with transistors , form the basis of all existing electronic devices and systems. There are only a few fundamental components and each of them performs its own characteristic function that is unique amongst the family of basic components. For example, capacitors store energy in an electric field, inductors store energy in a magnetic field, resistors dissipate electrical energy, and transistors act as switches and amplify electrical energy. It then happened in 1971 when Leon Chua , a professor of electrical engineering at the University of Berkeley , postulated the existence of a fourth fundamental passive circuit element, the memristor (Chua in IEEE Transactions on Circuit Theory 18(5):507–519, 1971). Chua suggested that this fourth device, which was only hypothetical at that point, must exist to complete the conceptual symmetry with the resistor, capacitor and inductor in respect of the four fundamental circuit variables such as voltage, current, charge and flux. He proved theoretically that the behaviour of the memristor could not be substituted by a combination of the other three circuit elements, hence that the memristor a truly fundamental device. This chapter is about the remarkable discovery of the “fourth fundamental passive circuit element”, the memristor. Its name is an amalgamation of the words “memory” and “resistor”, due to the memristor’s properties to act as a resistor with memory. Since the memristor belongs to the family of passive circuit elements, these will be focused here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, H., & Pickett, M. (2011). Spice modeling of memristors. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1832–1835). IEEE.

    Google Scholar 

  • Adee, S. (2008). The mysterious memristor. IEEE Spectrum.

    Google Scholar 

  • Biolek, D., Biolek, Z., & Biolkova, V. (2011). Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be self-crossing. Electronic Letters, 47(25), 1385–1387.

    Article  Google Scholar 

  • Borghetti, J. (2009). ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 464, 873–875.

    Article  Google Scholar 

  • Chua, L. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  • Chua, L. (2011). Resistance switching memories are memristors. Journal of Applied Physics, 102(4), 765–783.

    Article  MATH  Google Scholar 

  • Chua, L. O. (2012). The fourth element. Proceedings of the IEEE, 100(6), 1920–1927.

    Article  Google Scholar 

  • Chua, L., & Kang, M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.

    Article  MathSciNet  Google Scholar 

  • Chua, L. O., & Yang, L. (1988). Cellular neural networks: Theory. IEEE Transactions on Circuits and Systems II, 35(10), 1257–1272.

    Article  MathSciNet  MATH  Google Scholar 

  • Corinto, F., Kang, S. M., & Ascoli, A. (2013). Memristor-based neural circuits. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1832–1835). IEEE.

    Google Scholar 

  • Eshraghian, K., Kavehei, O., Cho, K. R., Chappell, J., Iqbal, A., Al-Sarawi, S., et al. (2012). Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proceedings of the IEEE, 100(6), 1991–2007.

    Article  Google Scholar 

  • EU. (2016). Human Brain Project (HBP). https://www.humanbrainproject.eu/. Accessed 2016.

  • Finelli, L. A., Haney, S., Bazhenov, M., Stopfer, M., & Sejnowski, T. J. (2008). Synaptic learning rules and sparse coding in a model sensory system. PLoS Computational Biology, 4(4), e1000062.

    Article  MathSciNet  Google Scholar 

  • Gaillardon, P. E., Ben-Jamaa, M. H., Beneventi, G. B., Clermidy, F., Perniola, L. (2010). Emerging memory technologies for reconfigurable routing in FPGA architecture. In 17th IEEE international conference on electronics, circuits, and systems (ICECS) (pp. 62–65). IEEE.

    Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J. L., Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature 383(LCN-ARTICLE-1996-002), 76–78.

    Google Scholar 

  • Gerstner, W., Ritz, R., & Van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biological Cybernetics, 69(5–6), 503–515.

    Article  MATH  Google Scholar 

  • IBM. (2016a). True North. http://www.re-search.ibm.com/articles/brain-chip.shtml. Accessed 2016.

  • IBM. (2016b). Watson. http://www.ibm.com/watson/. Accessed 2016.

  • Kazi, I., Meinerzhagen, P., Gaillardon, P. E., Sacchetto, D., Burg, A., De Micheli, G. (2013). A ReRAM-based non-volatile flip-flop with sub-V T read and CMOS voltage-compatible write. In IEEE 11th international on new circuits and systems conference (NEWCAS), 2013 (pp. 1–4). IEEE.

    Google Scholar 

  • Lehtonen, E., Poikonen, J., Laiho, M., Lu, W. (2011). Time-dependence of the threshold voltage in memristive devices. In IEEE international symposium on circuits and systems (ISCAS) (pp. 2245–2248). IEEE.

    Google Scholar 

  • Linares-Barranco, B., & Serrano-Gotarredona, T. (2009). Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Proceedings Online 40(3), 163–173.

    Google Scholar 

  • Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 9, 403–406.

    Article  Google Scholar 

  • Pediain. (2013). Memristor seminar report. Tech. rep., EEE Department. http://pediain.com/seminar/Memristor-Seminar-report-pdf-ppt.php

  • Pershin, Y., & Di Ventra, M. (2010). Writing to and reading from a nano-scale crossbar memory based on memristors. IEEE Transactions on Circuits and Systems I, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  • Pershin, Y., & Di Ventra, M. (2011). Memory effects in complex materials and nanoscale systems. Applied Physics, 60(2), 145–227.

    Google Scholar 

  • Pickett, M., Strukov, D., Borghetti, J., Yang, J., Snider, G., Stewart, D., et al. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508.

    Article  Google Scholar 

  • Rosaka, T., & Chua, L. (1993). The CNN universal machine: An analogic array computer. IEEE Transactions on Circuits and Systems II, 40(3), 163–173.

    Article  MATH  Google Scholar 

  • Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., & Linares-Barranco, B. (2013). STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience 7(2).

    Google Scholar 

  • Shin, S., Kim, K., & Kang, S. M. (2011). Reconfigurable stateful NOR gate for large-scale logic array integrations. IEEE Transactions on Circuits and Systems II, 58(7), 442–446.

    Article  Google Scholar 

  • Snider, G. (2007). Self-organized computation with unreliable, memristive nanodevices. Nanotechnology, 18(36), 365202.

    Article  Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  • Tanachutiwat, S., Liu, M., & Wang, W. (2011). FPGA Based on Integration of CMOS and RRAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(11), 2023–2032.

    Article  Google Scholar 

  • Tetzlaff, R. (2014). Memristors and memristive systems. New York: Springer.

    Book  Google Scholar 

  • Trefzer, M. A., & Tyrrell, A. M. (2015). Evolvable hardware: From practice to application. Berlin: Springer.

    Book  Google Scholar 

  • Vontobel, P., Robinett, W., Kuekes, P., Stewart, D., Straznicky, J., & Williams, R. (2009). Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology, 20(42), 1–21.

    Article  Google Scholar 

  • Wikipedia. (2016). Memristor. https://en.wikipedia.org/wiki/Memristor. Accessed May, 12, 2016, 14:36 h.

  • Williams, S. (2008). How we found the missing memristor. IEEE Spectrum.

    Google Scholar 

  • Williams, S. (2011). A short history of memristor development. Tech. rep., HP Labs. http://regmedia.co.uk/2011/12/22/hpmemristorhistory.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Trefzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Trefzer, M.A. (2017). Memristor in a Nutshell. In: Miranda, E. (eds) Guide to Unconventional Computing for Music. Springer, Cham. https://doi.org/10.1007/978-3-319-49881-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49881-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49880-5

  • Online ISBN: 978-3-319-49881-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics