Skip to main content

Experiments in Sound and Music Quantum Computing

  • Chapter
  • First Online:
Guide to Unconventional Computing for Music

Abstract

This chapter is an introduction to quantum computing in sound and music. This is done through a series of examples of research applying quantum computing and principles to musical systems. By this process, the key elements that differentiate quantum physical systems from classical physical systems will be introduced and what this implies for computation, sound, and music. This will also allow an explanation of the two main types of quantum computers being utilized inside and outside of academia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albash, T., Vinci, W., Mishra, A., Warburton, P. A., & Lidar, D. A. (2015). Consistency tests of classical and quantum models for a quantum annealer. Physical Review A, 91(4), 042314.

    Article  Google Scholar 

  • Alice Matters. (2016). Scientists ‘sonify’ LHC data to Chamber Music, Alice Matters, October 30, 2014, http://alicematters.web.cern.ch/?q=content/node/776. Last accessed June 2, 2016.

  • Brody, J. (1997). Background count for percussion and 2 channel electroacoustic. https://www.innova.mu/sites/www.innova.mu/files/liner-notes/314.htm. Last accessed September 10, 2016.

  • Bian, Z., Chudak, F., Macready, W. G., & Rose, G. (2010). The Ising model: Teaching an old problem new tricks. Available on-line http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf. Last accessed September 28, 2016.

  • Bull, L., Budd, A., Stone, C., Uroukov, I., Costello, B.d. L., & Adamatzky, A. (2008). Towards unconventional computing through simulated evolution: Control of nonlinear media by a learning classifier system. Artificial Life, 14(2), 203–222.

    Article  Google Scholar 

  • Cadiz, R., & Ramos, J. (2014). Sound synthesis of a Gaussian quantum particle in an infinite square well. Computer Music Journal, 38(4), 53–67.

    Article  Google Scholar 

  • Clauser, J., Horne, M., Shimony, A., & Holt, R. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880–884.

    Article  Google Scholar 

  • Coates, A., Huval, B., et al. (2013). Deep learning with COTS HPC systems. In Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA.

    Google Scholar 

  • Coleman, J. (2003). Music of the quantum. http://musicofthequantum.rutgers.edu/musicofthequantum.php. Last accessed September 10, 2016.

  • Davidson, M. P. (2007). Stochastic models of quantum mechanics—a perspective. In AIP conference proceedings 889. Available on-line https://arxiv.org/pdf/quant-ph/0610046.pdf. Last accessed September 30, 2016.

  • Deutsch, D. (1985). Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society A, 400(1818), 97–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Fine, N. J. (1949). On the Walsh functions. Transaction of the American Mathematical Society, 65, 372–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Freund, S., & Mitchell, J. (1999). A formal framework for the Java bytecode language and verifier. In Proceedings of the 14th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications (OOPSLA ‘99) (pp. 147–166), New York, USA.

    Google Scholar 

  • Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature, 159, 591–594.

    Article  Google Scholar 

  • Garmon, J. (2010). What were the original system requirements for Windows 1.0? Available on-line http://www.jaygarmon.net/2010/11/what-were-original-system-requirements.html. Last accessed September 28, 2016.

  • Glowacki, D., Tew, P., Mitchell, T., & McIntosh-Smith, S. (2012). Danceroom spectroscopy: Interactive quantum molecular dynamics accelerated on GPU architectures using OpenCL. In The fourth UK many-core developer conference (UKMAC 2012), Bristol, UK.

    Google Scholar 

  • Goldberg, R. (1974, June). Survey of virtual machine research. Computing, 34–45, 7.

    Google Scholar 

  • Grover, L. (2001). From Schrödinger’s equation to quantum search algorithm. American Journal of Physics, 69(7), 769–777.

    Article  Google Scholar 

  • Guohui W., & Ng, T. (2010). The impact of virtualization on network performance of Amazon EC2 data center. In Proceedings IEEE INFOCOM (pp. 1–9).

    Google Scholar 

  • Hong, C., Ou, Z., & Mandel, L. (1987). Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18), 2044–2046.

    Article  Google Scholar 

  • Huber, N., von Quast, M., et al. (2011). Evaluating and modeling virtualization performance overhead for cloud environments. In Proceedings of the 1st international conference on cloud computing and services science (CLOSER 2011) (pp. 563–573), Noordwijkerhout, The Netherlands.

    Google Scholar 

  • Isakov, S. V., Zintchenko, I. N., Rønnow, T. F., & Troyer, M. (2015). Optimised simulated annealing for Ising spin glasses. Computer Physics Communications, 192, 265–271.

    Article  MathSciNet  Google Scholar 

  • Jones, J. (2010). The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing, 6(2), 125–144.

    Google Scholar 

  • Katzgraber, H. G. (2015). Seeking quantum speedup through spin glasses: Evidence of tunneling?. APS March Meeting 2015, Abstract #L53.005.

    Google Scholar 

  • Kielpinski, D., Monroe, C., & Wineland, D. (2002). Architecture for a large-scale ion-trap quantum computer. Nature, 412, 709–711.

    Article  Google Scholar 

  • Kirke, A. (2015a). Sound example. https://soundcloud.com/alexiskirke/the-entangled-orchestra-simulation-prototype. Last accessed September 10, 2015.

  • Kelly, J., et al. (2015). State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519, 66–69.

    Article  Google Scholar 

  • Kirke, A. (2015b). Sound example. https://soundcloud.com/alexiskirke/quantum-pmap-convergence-example. Last accessed September 28, 2016.

  • Kirke, A., & Miranda, E. (2014a). Pulsed melodic affective processing: Musical structures for increasing transparency in emotional computation. Simulation, 90(5), 606–622.

    Article  Google Scholar 

  • Kirke, A., & Miranda, E. (2014b). Towards harmonic extensions of pulsed melodic affective processing—further musical structures for increasing transparency in emotional computation. International Journal of Unconventional Computation, 10(3), 199–217.

    Google Scholar 

  • Knill, E., Laflamme, R., & Milburn, G. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409, 46–52.

    Article  MATH  Google Scholar 

  • Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, 2, ID 5.

    Google Scholar 

  • Miranda, E. R. (2002). Computer sound design: Synthesis techniques and programming. Amsterdam: Elsevier/Focal Press.

    Google Scholar 

  • Miranda, E. R., & Maia, Jr., A. (2007). Fuzzy granular synthesis controlled by Walsh functions. In Proceedings of X Brazilian symposium on computer music, Belo Horizonte, Brazil. Available on-line http://compmus.ime.usp.br/sbcm/2005/papers/tech-12479.pdf. Last accessed September 30, 2016.

  • Neven, H. (2016). Quantum annealing at Google: Recent learnings and next steps. APS March Meeting 2016, Abstract #F45.001.

    Google Scholar 

  • O’Flaherty, E. (2009). LHCsound: Sonification of the ATLAS data output. STFC Small Awards Scheme.

    Google Scholar 

  • Putz, V., & Svozil, K. (2015). Quantum music. Soft Computing, 1–5. doi:10.1007/s00500-015-1835-x

  • Quantiki Wiki. (2015). List of QC simulators. http://www.quantiki.org/wiki/List_of_QC_simulators. Last accessed April 01, 2015.

  • Seo, K., Hwang, H., Moon, I., Kwon, O., & Kim, B. (2014). Performance comparison analysis of Linux container and virtual machine for building cloud. Advanced Science and Technology Letters, 66, 105–111.

    Article  Google Scholar 

  • Shadbolt, P., Mathews, K., Laing, A., & O’Brien, J. (2014). Testing the foundations of quantum mechanics with photons. Nature Physics, 10, 278–286.

    Article  Google Scholar 

  • Shadbolt, P., Verde, M., Peruzzo, A., Politi, A., Laing, A., & Lobino, M. (2012a). Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics, 6, 45–49.

    Google Scholar 

  • Shadbolt, P., Vértesi, T., Liang, Y., Branciard, C., Brunner, N., & O’Brien, J. (2012b). Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices. Scientific Reports, 2, Article 470.

    Google Scholar 

  • Shor, P. (2006). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing, 26(5), 1484–1509.

    Article  MathSciNet  MATH  Google Scholar 

  • Spector, L., et al. (1999). Finding a better-than-classical quantum AND/OR algorithm using genetic programming. In Proceedings of the congress on evolutionary computation (Vol. 3).

    Google Scholar 

  • Stockhausen, K. (1959). … How time passes … Die Reihe (English edition), (Vol. 3, pp. 10–40).

    Google Scholar 

  • Sturm, B. (2000). Sonification of particle systems via de Broglie’s hypothesis. In Proceedings of the 2000 International Conference on Auditory Display, Atlanta, Georgia.

    Google Scholar 

  • Sturm, B. (2001). Composing for an ensemble of atoms: The metamorphosis of scientific experiment into music. Organised Sound, 6(2), 131–145.

    Article  Google Scholar 

  • VMWare Inc. (2015). Understanding full virtualization, paravirtualization, and hardware assist. Available on line http://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html. Last accessed September 28, 2016.

  • Wallis, J. S. (1976). On the existence of Hadamard matrices. Journal of Combinatorial Theory A, 21(2), 188–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Warren, R. H. (2013). Numeric experiments on the commercial quantum computer. Notices of the AMS, 60(11).

    Google Scholar 

  • Weimer, H. (2014). Listen to quantum computer music. Quantenblog. http://www.quantenblog.net/physics/quantum-computer-music. Last accessed October 31, 2014.

  • Wired. (2015). CERN’s ‘Cosmic Piano’ uses particle data to make music. Wired, September 8, 2015.

    Google Scholar 

  • Xenakis, I. (1971). Formalized music. Bloomington: Indiana University Press.

    Google Scholar 

Download references

Acknowledgments

Parts of this chapter were published previously in the International Journal of Unconventional Computation (Kirke and Miranda 2014). Peter Shadbolt of the Controlled Quantum Dynamics Group at Imperial College London provided much help with insight into Bell’s Theorem and CHSH, as well as Fig. 5.11. Figures 5.1–5.10 were provided by both Peter Shadbolt and Alex Neville of the Bristol Centre for Quantum Photonics. Daniel Lidar and his group provided much insight and support into using the D-Wave during the first author’s residency at USC Viterbi School of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Kirke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kirke, A., Miranda, E.R. (2017). Experiments in Sound and Music Quantum Computing. In: Miranda, E. (eds) Guide to Unconventional Computing for Music. Springer, Cham. https://doi.org/10.1007/978-3-319-49881-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49881-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49880-5

  • Online ISBN: 978-3-319-49881-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics