Skip to main content

Energy Harvesting from the Fuel Cell Hybrid Power Source Based on Extremum Seeking Control Schemes

  • Chapter
  • First Online:
Energy Harvesting and Energy Efficiency

Part of the book series: Lecture Notes in Energy ((LNEN,volume 37))

Abstract

Energy harvesting is known as the conversion process of ambient energy into usable electrical energy, including the available and free energy of the renewable and green energy sources. This chapter analyzes the possibility to use the Extremum Seeking Control schemes for harvesting the hydrogen energy via a Fuel Cell Hybrid Power Source. The new Extremum Seeking Control schemes proposed here are based on a band-pass filter with the frequencies’ band larger than that of the series combination of high-pass and low-pass filters used in the classical Extremum Seeking Control scheme. The mathematical modeling of the Extremum Seeking Control scheme that is applied to nonlinear dynamic plant shows the close relations between the search speed, the derivatives of the unknown input-to-output map, and the cut-off frequencies of the band-pass filter. The simulation results are compared with the results of classical Extremum Seeking Control schemes. The ratio of these search speeds is used as the performance indicator, besides the tracking accuracy evaluated for each control scheme. A Maximum Power Point tracking technique is proposed for the Fuel Cell stack based on a modified Extremum Seeking Control that slightly improves the performance. A higher value of the searching speed is obtained for the same tracking accuracy. The search speed will increase proportionally with the product of both control parameters (the closed loop gain and the dither gain), so it is practically limited for safe reasons. An advanced Extremum Seeking Control scheme is proposed here to further reduce the power ripple and obtain the imposed performance related to the search speed and tracking accuracy. Finally, the dynamical operation of the Fuel Cell stack under constant and variable load is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aESC:

advanced Extremum Seeking Control

ANN:

Artificial Neural Network

BPF:

Band Pass Filter

bpfESC:

Band Pass Filter ESC

EA:

Evolutionary Algorithms

ES:

Energy Sources

ESS:

Energy Storage System

EQ:

Equivalent

ESC :

Extremum Seeking Control

FC:

Fuel Cell

FCHPS :

Fuel Cell Hybrid Power Source

FLC:

Fuzzy Logic Controller

GMPP:

Global Maximum Power Point

GMPPT:

GMPP Tracking

HF:

High Frequency

hoESC:

high-order Extremum Seeking Control

HPF:

High-Pass Filter

HC:

Hill Climbing

HPS:

Hybrid Power Source

H1 :

First Harmonic

IC:

Incremental Conductance

LF:

Low Frequency

LPF:

Low-Pass Filter

MEP:

Maximum Efficiency Point

MPP :

Maximum Power Point

MPPT:

MPP Tracking

mESC:

modified Extremum Seeking Control

P&O:

Perturb & Observe

PEM:

Proton Exchange Membrane

PV:

Photovoltaic

RCC:

Ripple Correlation Control

RES:

Renewable Energy Sources

WT:

Wind Turbines

References

  1. Dargahi M, Rouhi J, Rezanejad M, Shakeri M (2009) Maximum power point tracking for fuel cell in fuel cell/battery hybrid power systems. Eur J Sci Res 25(4):538–548

    Google Scholar 

  2. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449

    Article  Google Scholar 

  3. Salas V, Olías E, Barrado A, Lázaro A (2006) Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol Energy Mat Sol Cells 90(11):1555–1578

    Article  Google Scholar 

  4. Caux S, Hankache W, Fadel M, Hissel D (2010) On-line fuzzy energy management for hybrid fuel cell systems. Int J Hydrogen Energy 35(5):2134–2143

    Article  Google Scholar 

  5. Wang J-C, Su Y-L, Shieh J-C, Jiang J-A (2011) High-accuracy maximum power point estimation for photovoltaic arrays. Sol Energy Mat Sol Cells 95:843–851

    Article  Google Scholar 

  6. Reisi AR, Moradi MH, Jamasb S (2013) Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew Sust Energy Rev 19:433–443

    Article  Google Scholar 

  7. Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sust Energy Rev 19:475–488

    Article  Google Scholar 

  8. Dali M, Belhadj J, Roboam X (2010) Hybrid solar-wind system with battery storage operating in grid–connected and standalone mode: control and energy management—experimental investigation. Energy 35(6):2587–2595

    Article  Google Scholar 

  9. Khanh LN, Seo JJ, Kim YS, Won DJ (2010) Power-management strategies for a grid-connected PV-FC hybrid system. IEEE Trans Energy Convers 25(3):1874–1882

    Google Scholar 

  10. Giustiniani A et al (2010) Enhancing polymeric electrolyte membrane fuel cell control by means of the perturb and observe technique. Fuel Cell Sci Technol 7(1):11021–11031

    Article  Google Scholar 

  11. Liu F, Duan S, Liu F, Liu B, Kang Y (2008) A variable step size INC MPPT method for PV systems. IEEE Trans Ind Electron 55(7):2622–2628

    Article  Google Scholar 

  12. Xiao W, Elnosh A, Khadkikar V, Zeineldin H (2011) Overview of maximum power point tracking technologies for photovoltaic power systems. In: 37th annual conference of IEEE IES 2011. IECON 2011, pp 3900–3905

    Google Scholar 

  13. Bouchafaa F, Hamzaoui I, Hadjammar A (2011) Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Procedia 6:633–642

    Article  Google Scholar 

  14. Karlis AD, Kottas TL, Boutalis YS (2007) A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN). Electr Power Syst Res 77(3–4):315–327

    Article  Google Scholar 

  15. Liao C-C (2010) Genetic k-means algorithm based RBF network for photovoltaic MPP prediction. Energy 35(2):529–536

    Article  Google Scholar 

  16. Chen LR, Tsai CH, Lin YL, Lai YS (2010) A biological swarm chasing algorithm for tracking the PV maximum power point. IEEE Trans Energy Convers 25(2):484–493

    Article  Google Scholar 

  17. Kadri R, Andrei H, Gaubert J-P, Ivanovici T, Champenois G, Andrei P (2012) Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions. Energy 42(1):57–67

    Article  Google Scholar 

  18. Becherif M, Hissel D (2010) MPPT of a PEMFC based on air supply control of the motocompressor group. Int J Hydrogen Energy 35(22):12521–12530

    Article  Google Scholar 

  19. Esram T, Kimball JW, Krein PT, Chapman PL, Midya P (2006) Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power Electron 21(5):1282–1291

    Article  Google Scholar 

  20. Ariyur KB, Krstić M (2003) Real-time optimization by extremum-seeking control. Wiley, New York

    Book  MATH  Google Scholar 

  21. Gelbert G, Moeck JP, Paschereit CO, King R (2012) Advanced algorithms for gradient estimation in one- and two-parameter extremum seeking controllers. J Process Control 22:700–709

    Article  Google Scholar 

  22. Azar FE, Perrier M, Srinivasan B (2011) A global optimization method based on multi-unit extremum-seeking for scalar nonlinear systems. Comput Chem Eng 35:456–463

    Article  Google Scholar 

  23. Manzie C, Krstić M (2009) Extremum seeking with stochastic perturbations. IEEE Trans Autom Control 54:580–585

    Article  MathSciNet  Google Scholar 

  24. Guay M, Dochain D, Perrier M (2004) Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics. Automatica 40:881–888

    Article  MathSciNet  MATH  Google Scholar 

  25. Bizon N, Oproescu M, Raducu M, Constantinescu LM (2013) The extremum seeking control based on band pass filter for the dither signal processed in the control loop. Int J Tech Phys Probl Eng (IJTPE) 16(5/3):133–143

    Google Scholar 

  26. Bizon N (2013) Energy harvesting from the FC stack that operates using the MPP tracking based on modified extremum seeking control. Appl Energy 104:326–336

    Article  Google Scholar 

  27. Bizon N (2013) FC energy harvesting using the MPP tracking based on advanced extremum seeking control. Int J Hydrogen Energy 38(4):1952–1966

    Article  Google Scholar 

  28. Bizon N (2012) Distributed generation systems integrating renewable energy resources. Nova Science Publishers Inc., New York

    Google Scholar 

  29. Musio F et al (2011) PEMFC system simulation in MATLAB–Simulink® environment. Int J Hydrogen Energy 36(13):8045–8052

    Article  Google Scholar 

  30. Linares JI, Herranz LE, Moratilla BY (2011) Maximum efficiency of direct energy conversion systems. Application to fuel cells. Int J Hydrogen Energy 36(18):11871–11885

    Article  Google Scholar 

  31. Ahluwalia RK, Wang X (2005) Direct hydrogen fuel cell systems for hybrid vehicles. J Power Sources 139:152–164

    Article  Google Scholar 

  32. Ahmed NA, Al-Othman AK, Al-Rashidi MR (2011) Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation. Electr Power Syst Res 81(5):1096–1106

    Article  Google Scholar 

  33. Mehrdad E, Yimin G, Ali E (2010) Modern electric, hybrid electric, and fuel cell vehicles, vol 15. CRC Press, Boca Raton

    Google Scholar 

  34. Degrenne N, Buret F, Allard B, Bevilacqua P (2012) Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load. J Power Sources 205:188–193

    Article  Google Scholar 

  35. Soltani M, Bathaee SMT (2010) Development of an empirical dynamic model for a Nexa PEM fuel cell power module. Energy Convers Manag 51(12):2492–2500

    Article  Google Scholar 

  36. Ramos-Paja CA, Spagnuolo G, Petrone G, Giral R, Romero A (2010) Fuel cell MPPT for fuel consumption optimization. In: IEEE international symposium on circuits and systems, pp 2199–202

    Google Scholar 

  37. Giustiniani A, Petrone G, Spagnuolo G, Vitelli M (2010) Low-frequency current oscillations and maximum power point tracking in grid-connected fuel-cell-based systems. IEEE Trans Ind Electron 57(6):2042–2053

    Article  Google Scholar 

  38. Bizon N, Radut M, Oproescu M (2015) Energy control strategies for the fuel cell hybrid power source under unknown load profile. Energy 86:31–41

    Article  Google Scholar 

  39. Bizon N (2014) Load-following mode control of a standalone renewable/fuel cell hybrid power source. Energy Convers Manag 77:763–772

    Article  Google Scholar 

  40. Krsti¢ M (2000) Performance improvement and limitations in extremum seeking. Syst Control Lett 39(5):313–326

    Article  MathSciNet  Google Scholar 

  41. Krsti¢ M, Wang H-H (2000) Design and stability analysis of extremum seeking feedback for general nonlinear systems. Automatica 36(2):595–601

    Article  Google Scholar 

  42. Bizon N (2014) Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow. Appl Energy 129:147–157

    Article  Google Scholar 

  43. Tirnovan R, Giurgea S (2012) Efficiency improvement of a PEMFC power source by optimization of the air management. Int J Hydrogen Energy 37(9):7745–7756

    Article  Google Scholar 

  44. Segura F, Andújar JM (2012) Power management based on sliding control applied to fuel cell systems: a further step towards the hybrid control concept. Appl Energy 99:213–225

    Article  Google Scholar 

  45. Wong KH et al (2011) A theoretical study of inlet relative humidity control in PEM fuel cell. Int J Hydrogen Energy 36(18):11871–11885

    Article  Google Scholar 

  46. Bizon N, Oproescu M, Raceanu M (2015) Efficient energy control strategies for a standalone renewable/fuel cell hybrid power source. Energy Convers Manag 77:768–772

    Google Scholar 

  47. Bizon N (2014) Improving the PEMFC energy efficiency by optimizing the fuelling rates based on extremum seeking algorithm. Int J Hydrogen Energy 39(20):10641–10654

    Article  Google Scholar 

  48. Loo KH, Zhu GR, Lai YM, Tse CK (2011) Development of a maximum-power-point tracking algorithm for direct methanol fuel cell and its realization in a fuel cell/supercapacitor hybrid energy system. In: 8th international conference on power electronics and ECCE Asia, pp 1753–1760

    Google Scholar 

  49. Woodward L, Perrier M, Srinivasan B, Pinto RP, Tartakovsky B (2010) Comparison of real-time methods for maximizing power output in microbial fuel cells. AIChE J 56(10):2742–2750

    Article  Google Scholar 

  50. Woo CH, Benziger JB (2007) PEM fuel cell current regulation by fuel feed control. Chem Eng Sci 62:957–968

    Article  Google Scholar 

  51. Zhang C, Ordóñez R (2012) Extremum-seeking control and applications: a numerical optimization-based approach. Springer, London

    Book  MATH  Google Scholar 

  52. Bizon N (2010) On tracking robustness in adaptive extremum seeking control of the fuel cell power plants. Appl Energy 87(10):3115–3130

    Article  Google Scholar 

  53. Chang YA, Moura SJ (2009) Air flow control in fuel cell systems: an extremum seeking approach. In: American Control Conference, pp 1052–1059

    Google Scholar 

  54. Bower W, Whitaker C (2002) Certification of photovoltaic inverters: the initial step toward PV system certification. In: IEEE conference photovoltaic specialists, pp 1406–1409

    Google Scholar 

  55. Zhong Z-D, Huo H-B, Zhu X-J, Cao G-Y, Ren Y (2008) Adaptive maximum power point tracking control of fuel cell power plants. J Power Sources 176:259–269

    Article  Google Scholar 

  56. Tang Y, Yuan W, Pan M, Li Z, Chen G, Li Y (2010) Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes. Appl Energy 87:1410–1417

    Article  Google Scholar 

  57. Ramos-Paja CA, Giral R, Martinez-Salamero L, Romano J, Romero A, Spagnuolo G (2010) A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans Ind Electron 57(6):1914–1924

    Article  Google Scholar 

  58. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  59. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007

    Article  Google Scholar 

  60. Gou B, Na WK, Diong B (2010) Fuel cells: modeling, control, and applications, vol 6. CRC Press, New York

    Google Scholar 

  61. Larminie J, Dicks A (2000) Fuel cell systems explained, 1st edn. Wiley, Chichester

    Google Scholar 

  62. Zenith F, Skogestad S (2007) Control of fuel cell power output. J Process Control 17:333–347

    Article  Google Scholar 

  63. Pukrushpan JT, Stefanopoulou AG, Peng H (2004) Control of fuel cell power systems: principles, modeling and analysis and feedback design. Springer, London

    Book  Google Scholar 

  64. Wahdame B, Candusso D, Kauffmann J-M (2006) Study of gas pressure and flow rate influences on a 500 W PEM fuel cell, thanks to the experimental design methodology. J Power Sources 156:92–99

    Article  Google Scholar 

  65. Kolavennu PK, Palanki S, Cartes DA, Telotte JC (2008) Adaptive controller for tracking power profile in a fuel cell powered automobile. J Process Control 18:558–567

    Article  Google Scholar 

  66. Bao C, Ouyang M, Yi B (2006) Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—II. Linear and adaptive nonlinear control. Int J Hydrogen Energy 31:1897–1913

    Article  Google Scholar 

  67. Choe S-Y (2008) Dynamic simulator and controls for a PEM fuel cell power system. World Electr Veh J 2(3):46–62

    Google Scholar 

  68. Kunusch C, Puleston PF, Mayosky MA, Riera J (2009) Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans Control Syst Technol 17(1):167–173

    Article  Google Scholar 

  69. Feroldi D, Serra M, Riera J (2009) Energy management strategies based on efficiency map for fuel cell hybrid vehicles. J Power Sources 190:387–401

    Article  Google Scholar 

  70. Dochain D, Perrier M, Guay M (2011) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simul 82:369–380

    Article  MathSciNet  MATH  Google Scholar 

  71. Chen P-C (2011) The dynamics analysis and controller design for the PEM fuel cell under gas flow rate constraints. Int J Hydrogen Energy 36(4):3110–3122

    Article  Google Scholar 

  72. Chen P-C (2011) Output-feedback voltage tracking control for input-constrained PEM fuel cell systems. Int J Hydrogen Energy 36(22):14608–14621

    Article  Google Scholar 

  73. Tan Y, Nesic D, Mareels I (2006) On non-local stability properties of extremum seeking control. Automatica 42(6):889–903

    Article  MathSciNet  MATH  Google Scholar 

  74. Tan Y, Nesic D, Mareels I (2008) On the choice of dither in extremum seeking systems: a case study. Automatica 44:1446–1450

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research that led to the results shown here has received funding from the project “Cost-Efficient Data Collection for Smart Grid and Revenue Assurance (CERA-SG)”, ID: 77594, 2016-19, ERA-Net Smart Grids Plus. Some figures, tables and text are reproduced from [25,26,27] here with kind permission from Elsevier Limited, UK, and IJTPE—IOCTPE, [February 13, 2016].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicu Bizon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bizon, N. (2017). Energy Harvesting from the Fuel Cell Hybrid Power Source Based on Extremum Seeking Control Schemes. In: Bizon, N., Mahdavi Tabatabaei, N., Blaabjerg, F., Kurt, E. (eds) Energy Harvesting and Energy Efficiency. Lecture Notes in Energy, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-49875-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49875-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49874-4

  • Online ISBN: 978-3-319-49875-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics