Skip to main content

Maximum Power Point Tracking Algorithms for Partial Shaded PV Systems

  • Chapter
  • First Online:
Energy Harvesting and Energy Efficiency

Part of the book series: Lecture Notes in Energy ((LNEN,volume 37))

Abstract

Photovoltaic modules have nonlinear current-voltage (I-V) characteristics. Thus, output power of the photovoltaic module varies with module specification and its operation point. It means that, the photovoltaic system generates maximum power at a single operation point for an environmental condition such as the irradiation level and angle, ambient temperature level etc. In addition, energy conversion efficiency varies with load level and operation point of the photovoltaic system. Since these parameters are variable, operation point of the photovoltaic system should be controlled to get maximum output power and maximum energy conversion efficiency. This action is called as maximum power point tracking. The maximum power point tracking action is usually performed with a power electronics converter. A number of maximum power point tracking methods have been introduced to obtain fast response, especially in rapidly-changing atmospheric conditions, low oscillation and higher energy conversion efficiency values. However, most of these methods are effective for uniform solar irradiation conditions. If the solar irradiation is non-uniform, the power-voltage (P-V) curve of the photovoltaic module or array has multiple peak points: Several local maximum power points and one global maximum point. In this case, traditional maximum power point tracking methods determine the nearest peak power point, which may be a local maximum point. Thus, some improved maximum power point tracking methods have been proposed to determine the global maximum power point of the photovoltaic system even under partial shading conditions. A discussion on different maximum power point tracking methods for the solution of these problems will be given and the most powerful techniques in the literature will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACA:

Ant colony algorithm

ANN:

Artificial Neural Network

CC:

Constant current

CST:

Current sweep technique

CV:

Constant voltage

FLC:

Fuzzy logic control

GP:

Global peak

IC:

Incremental conductance

LP:

Local peak

MPP:

Maximum power point

MPPT:

Maximum power point tracking

PC:

Pilot cell

P&O:

Perturb and observe

RCC:

Ripple correlation control

PSC:

Partially shading condition

PSO:

Particle swarm optimization

PV:

Photovoltaic

References

  1. Sefa I, Altin N (2009) Grid interactive photovoltaic inverters—a review. J Fac Eng Arch Gazi Univ 24(3):409–424

    Google Scholar 

  2. Sefa I, Ozdemir S (2010) Multifunctional interleaved boost converter for PV systems. In: IEEE international symposium on industrial electronics (ISIE 2010), pp 951–956

    Google Scholar 

  3. Altin N, Ozdemir S (2013) Three-phase three-level grid interactive inverter with fuzzy logic based maximum power point tracking controller. Energy Convers Manag 69:17–26

    Article  Google Scholar 

  4. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449

    Article  Google Scholar 

  5. Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98

    Article  Google Scholar 

  6. Rodriguez JDB, Franco E, Petrone G, Paja CAR, Spagnuolo G (2014) Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electron 7(6):1396–1413

    Article  Google Scholar 

  7. Koutroulis E, Blaabjerg F (2012) A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J Photovoltaics 2(2):184–190

    Article  Google Scholar 

  8. Rani BI, Ilango GS, Nagamani C (2013) Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Trans Sustain Energy 4(3):594–601

    Article  Google Scholar 

  9. El-Dein MZS, Kazerani M, Salama MMA (2013) Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Trans Sustain Energy 4(1):145–153

    Article  Google Scholar 

  10. Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sustain Energy Rev 19:475–488

    Article  Google Scholar 

  11. Fathy A (2015) Reliable and efficient approach for mitigating the shading effect on photovoltaic module based on Modified Artificial Bee Colony algorithm. Renew Energy 81:78–88

    Article  Google Scholar 

  12. Belhachat F, Larbes C (2015) Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Sol Energy 120:399–418

    Article  Google Scholar 

  13. Daraban S, Petreus D, Morel C (2014) A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy 74:374–388

    Article  Google Scholar 

  14. Olalla C, Clement D, Rodriguez M, Maksimovic D (2013) Architectures and control of submodule integrated DC–DC converters for photovoltaic applications. IEEE Trans Power Electron 28(6):2980–2997

    Article  Google Scholar 

  15. Moretón R, Lorenzo E, Leloux J, Carrillo JM (2014) Dealing in practice with hot-spots. In: 29th European photovoltaic solar energy conference and exhibition, pp 1–6

    Google Scholar 

  16. Kim KA, Seo GS, Cho BH, Krein PT (2016) Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization. IEEE Trans Power Electron 31(2):1121–1130

    Article  Google Scholar 

  17. Patel H, Agarwal V (2008) MATLAB-based modeling to study the effects of partial shading on pv array characteristics. IEEE Trans Energy Convers 23(1):302–310

    Article  Google Scholar 

  18. Batzelis EI, Georgilakis PS, Papathanassiou SA (2015) Energy models for photovoltaic systems under partial shading conditions: a comprehensive review. IET Renew Power Gener 9(4):340–349

    Article  Google Scholar 

  19. Ishaque K, Salam Z, Taheri H, Syafaruddin (2011) Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simul Model Pract Theor 19:1613–1626

    Article  Google Scholar 

  20. Hidalgo-Gonzalez PL, Brooks AE, Kopp ES, Lonij VP, Cronin AD (2012) String-level (kW-scale) IV curves from different module types under partial shade. In: 38th IEEE photovoltaic specialists conference (PVSC), pp 1442–1447

    Google Scholar 

  21. Ji Y-H, Jung D-Y, Kim J-G, Kim J-H, Lee T-W, Won C-Y (2011) A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans Power Electron 26(4):1001–1009

    Article  Google Scholar 

  22. Silvestre S, Kichou S, Chouder A, Nofuentes G, Karatepe E (2015) Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions. Energy 86:42–50

    Article  Google Scholar 

  23. Bidram A, Davoudi A, Balog RS (2012) Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J Photovoltaics 2(4):532–546

    Article  Google Scholar 

  24. Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Ind Electron 55(4):1689–1698

    Article  Google Scholar 

  25. Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61(10):5384–5392

    Article  Google Scholar 

  26. Carannante G, Fraddanno C, Pagano M, Piegari L (2009) Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans Ind Electron 56(11):4374–4380

    Article  Google Scholar 

  27. Chen K, Tian S, Cheng Y, Bai L (2014) An improved MPPT controller for photovoltaic system under partial shading condition. IEEE Trans Sustain Energy 5(3):978–985

    Article  Google Scholar 

  28. Nguyen TL, Low K-S (2010) A global maximum power point tracking scheme employing direct search algorithm for photovoltaic systems. IEEE Trans Ind Electron 57(10):3456–3467

    Article  Google Scholar 

  29. Alajmi BN, Ahmed KH, Finney SJ, Williams BW (2013) A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids. IEEE Trans Ind Electron 60(4):1596–1606

    Article  Google Scholar 

  30. Chin CS, Tan MK, Neelakantan P, Chua BL, Teo KTK (2011) Optimization of partially shaded PV array using fuzzy MPPT. In: IEEE colloquium on humanities, science and engineering (CHUSER), pp 481–486

    Google Scholar 

  31. Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62:330–340

    Article  Google Scholar 

  32. Syafaruddin, Karatepe E, Hiyama T (2009) Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew Power Gener 3(2):239–253

    Article  Google Scholar 

  33. Ishaque K, Salam Z, Shamsudin A, Amjad M (2012) A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl Energy 99:414–422

    Article  Google Scholar 

  34. Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 27(8):3627–3638

    Article  Google Scholar 

  35. Ishaque K, Salam Z (2013) A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans Ind Electron 60(8):3195–3206

    Google Scholar 

  36. Ramaprabha R, Mathur B, Ravi A, Aventhika S (2010) Modified Fibonacci search based MPPT scheme for SPVA under partial shaded conditions. In: IEEE third international conference on emerging trends in engineering and technology, pp 379–384

    Google Scholar 

  37. Tumbelaka HH, Miyatake M (2010) Simple integration of three-phase shunt active power filter and photovoltaic generation system with Fibonacci-search-based MPPT. In: IEEE symposium on industrial electronics and applications (ISIEA 2010), pp 94–99

    Google Scholar 

  38. Miyatake M, Inada T, Hiratsukai I, Zhao H, Otsuka H, Nakano M (2004) Control characteristics of a Fibonacci-search-based maximum power point tracker when a photovoltaic array is [1] partially shaded. In: IEEE the 4th international power electronics and motion control conference, (IPEMC 2004), pp 816–821

    Google Scholar 

  39. Jiang LL, Maskell DL (2014) A uniform implementation scheme for evolutionary optimization algorithms and the experimental implementation of an ACO based MPPT for PV systems under partial shading. In: IEEE symposium on computational intelligence applications in smart grid (CIASG), pp 1–8

    Google Scholar 

  40. Tajuddin MFN, Ayob SM, Salam Z (2012) Tracking of maximum power point in partial shading condition using differential evolution (DE). In: IEEE international conference on power and energy (PECON), pp 384–389

    Google Scholar 

  41. Ramli MAM, Ishaque K, Jawaid F, Al-Turki YA, Salam Z (2015) A modified differential evolution based maximum power point tracker for photovoltaic system under partial shading condition. Energy Build 103:175–184

    Article  Google Scholar 

  42. Elnosh A, Khadkikar V, Xiao W, Kirtely Jr. JL (2014) An improved extremum seeking based MPPT for grid connected PV systems with partial shading. In: IEEE international symposium on industrial electronics, pp 2548–2553

    Google Scholar 

  43. Liu Z-H, Chen J-H, Huang J-W (2015) A review of maximum power point tracking techniques for use in partially shaded conditions. Renew Sustain Energy Rev 41:436–453

    Article  Google Scholar 

  44. Bizon N (2015) Global maximum power point tracking based on new extremum seeking control scheme. Prog Photovoltaics Res Appl. doi:10.1002/pip.2700

  45. Syafaruddin, Hiyama T, Karatepe E (2010) Investigation of ANN performance for tracking the optimum points of PV module under partially shaded conditions. In: Proceedings of international power energy conference, pp 1186–1191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmi Altin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sefa, I., Altin, N., Ozdemir, S. (2017). Maximum Power Point Tracking Algorithms for Partial Shaded PV Systems. In: Bizon, N., Mahdavi Tabatabaei, N., Blaabjerg, F., Kurt, E. (eds) Energy Harvesting and Energy Efficiency. Lecture Notes in Energy, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-49875-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49875-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49874-4

  • Online ISBN: 978-3-319-49875-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics