Skip to main content

Clinical Applications and Advantages of Swept Source OCT

  • Chapter
  • First Online:
Atlas of Swept Source Optical Coherence Tomography
  • 1207 Accesses

Abstract

The Topcon DRI Triton is an optical coherence tomographer (OCT) with a built-in color fundus camera. It utilizes swept source technology and has a central wavelength of 1050 nm. The scanning speed is 100 kHz and the depth resolution is 8 μ. It provides high-speed, high-resolution B-scans of the anterior and posterior segments of the human eye. It also provides 3D volumetric cubes that can be viewed in cross-sectional or in an en face format. Thickness maps are automatically generated for various retinal layers including: (1) full retinal thickness; (2) retinal nerve fiber layer (RNFL); (3) ganglion cell layer (GCL) plus the inner-plexiform layer (IPL); (4) RNFL plus GCL plus IPL; and (5) choroid layer. Due to the rapid speed of scanning, large areas of the retina can be imaged in a single scan including 3D scans covering areas as large as 12 × 9 mm, which includes both the macula and optic disc regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971–8.

    Article  PubMed  Google Scholar 

  3. Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153(1):10–6.e1.

    Article  PubMed  Google Scholar 

  4. Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K, et al. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci. 2012;53(4):2300–7.

    Article  PubMed  Google Scholar 

  5. Ruiz-Moreno JM, Flores-Moreno I, Lugo F, Ruiz-Medrano J, Montero JA, Akiba M. Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):353–9.

    Article  PubMed  Google Scholar 

  6. Mansouri K, Weinreb RN. Evaluation of retinal and choroidal thickness by swept source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol. 2014;157:1022–32.

    Article  PubMed  Google Scholar 

  7. Ruiz-Medrano J, Ruiz-Moreno JM. Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:3532–42.

    Article  PubMed  Google Scholar 

  8. Mansouri K, Medeiros FA, Weinreb RN. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography. Ophthalmology. 2013;120:2508–16.

    Article  PubMed  Google Scholar 

  9. Michalewska Z, Michalewska J, Adelman RA, Zawlslak E, Nawrocki J. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with interal limiting membrane peeling for idiopathic epiretinal membranes. Retina. 2015;35:487–91.

    Article  PubMed  Google Scholar 

  10. Michalewska J, Michalewska Z, Nawrocka Z, Bednarski M, Nawrocki J. Correlation of choroidal thickness and volume measurements with axial length and age using swept-source optical coherence tomography and optical low-coherence reflectometry. BioMed Research Inter. 2014;2014:639160.

    Google Scholar 

  11. Zhang C, Tatham AJ, Medeiros FA, Zangwill LM, Yang Z, Weinreb RN. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014;9(10):e109683.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(5):3102–7.

    Article  PubMed  Google Scholar 

  13. Itakura H, Kishi S. Vitreous changes in high myopia observed by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:1447–52.

    Article  PubMed  Google Scholar 

  14. Schaal KB, Pang CE, Engelbert M. The premacular bursa’s shape revealed in vivo by swept-source optical coherence tomography. Ophthalmology. 2014;121:1020–8.

    Article  PubMed  Google Scholar 

  15. Stanga PE, Sala-Puigdollers A, Caputo S, Jaberansari H, Cien M, Gray J, et al. In vivo imaging of cortical vitreous using 1050 nm swept source deep range imaging optical coherence tomography. Am J Ophthalmol. 2014;157(2):397–404e2.

    Article  PubMed  Google Scholar 

  16. Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(5):2898–900.

    Article  PubMed  Google Scholar 

  17. Novais EA, Adhi M, Moult EM, Louzada RN, Cole ED, Husvogt L, et al. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;164:80–8.

    Article  PubMed  Google Scholar 

  18. Hood DC, Raza AS. On improving the use of OCT imaging for detecting glaucomatous damage. Br J Ophthalmol. 2014;98:ii1–9.

    Google Scholar 

  19. Hood DC, Raza AS, de Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.

    Article  PubMed  Google Scholar 

  20. Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R, Ritch R, et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci. 2015;56(11):6208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hood DC, De Cuir N, Mavrommatis MA, Xin D, Muhammad H, Reynaud J, et al. Defects along blood vessels in glaucoma suspects and patients. Invest Ophthalmol Vis Sci. 2016;57(4):1680–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hood DC, Raza AS, De Moraes CG, Alhadeff PA, Idiga J, Blumberg DM, et al. Evaluation of a one-page report to aid in detecting glaucomatous damage. Transl Vis Sci Technol. 2014;3(6):8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sinai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Choudhry, N., Sinai, M.J. (2017). Clinical Applications and Advantages of Swept Source OCT. In: Michalewska, Z., Nawrocki, J. (eds) Atlas of Swept Source Optical Coherence Tomography . Springer, Cham. https://doi.org/10.1007/978-3-319-49840-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49840-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49839-3

  • Online ISBN: 978-3-319-49840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics