Skip to main content

Survey of Organic Magnetism

  • Chapter
  • First Online:
  • 584 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

Abstract

In this chapter, we initially give an overview of magnetism and briefly discuss the advantages of “organic ferromagnetism.” Next, we review the many rules and indices used for predicting ferromagnetism that are proposed in the frameworks of molecular orbital methods and valence-bond theory . We introduce two types of strategies for designing ferromagnetic systems: “inter-molecular spin alignment (molecular magnets)” and “intra-molecular spin alignment (high-spin polymers).” Finally, we mention the theoretical approaches used to understand and predict magnetism in larger systems, namely, statistical treatment using the Ising model and quantum chemistry calculations for large systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajca, A., Wongsriratanakul, J., Rajca, S.: Magnetic ordering in an organic polymer. Science 294, 1503–1505 (2001)

    Article  CAS  Google Scholar 

  2. Rajca, A.: From high-spin organic molecules to organic polymers with magnetic ordering. Chem. Eur. J. 8, 4834–4841 (2002)

    Article  CAS  Google Scholar 

  3. Rajca, A., Wongsriratanakul, J., Rajca, S.: Organic spin clusters: macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S = 5-13. J. Am. Chem. Soc. 126, 6608–6626 (2004)

    Article  CAS  Google Scholar 

  4. Rajca, S., Rajca, A., Wongsriratanakul, J., Butler, P., Choi, S.-M.: Organic spin clusters. A dendritic-macrocyclic poly(arylmethyl) polyradical with very high spin of S = 10 and Its derivatives: synthesis, magnetic studies, and small-angle neutron scattering. J. Am. Chem. Soc. 126, 6972–6986 (2004)

    Article  CAS  Google Scholar 

  5. Matsushita, M.M., Kawakami, H., Sugawara, T., Ogata, M.: Molecule-based system with coexisting conductivity and magnetism and without magnetic inorganic ions. Phys. Rev. B 77, 195208 (2008)

    Article  CAS  Google Scholar 

  6. Komatsu, H., Matsushita, M.M., Yamamura, S., Sugawara, Y., Suzuki, K., Sugawara, T.: Influence of magnetic field upon the conductance of a unicomponent crystal of a tetrathiafulvalene-based nitronyl nitroxide. J. Am. Chem. Soc. 132, 4528–4529 (2010)

    Article  CAS  Google Scholar 

  7. Nakahara, K., Iwasa, S., Satoh, M., Morioka, Y., Iriyama, J., Suguro, M., Hasegawa, E.: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351–354 (2002)

    Article  CAS  Google Scholar 

  8. Suga, T., Pu, Y.-J., Kasatori, S., Nishide, H.: Cathode- and anode-active poly(nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40, 3167–3173 (2007)

    Article  CAS  Google Scholar 

  9. Nishide, H., Oyaizu, K.: Toward flexible batteries. Science 319, 737–738 (2008)

    Article  CAS  Google Scholar 

  10. Janoschka, T., Hager, M.D., Schubert, U.S.: Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397–6409 (2012)

    Article  CAS  Google Scholar 

  11. Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., Arifuku, K., Sato, K., Takui, T.: Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat. Mater. 10, 947–951 (2011)

    Article  CAS  Google Scholar 

  12. Ferlay, S., Mallah, T., Ouahes, R., Veillet, P., Verdaguer, M.: A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995)

    Article  CAS  Google Scholar 

  13. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.-Y., Kaizu, Y.: Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003)

    Article  CAS  Google Scholar 

  14. Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A., Mrozinski, J.: A tetranuclear 3d-4f single molecule magnet:[CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 126, 420–421 (2004)

    Article  CAS  Google Scholar 

  15. Michaut, C., Ouahab, L., Bergerat, P., Kahn, O., Bousseksou, A.: Structure and ferromagnetic interactions in open-shell supramolecular assemblies constructed from radical cations and hexacyanometallate anions. J. Am. Chem. Soc. 118, 3610–3616 (1996)

    Article  CAS  Google Scholar 

  16. Kahn, O.: Chemistry and physics of supramolecular magnetic materials. Acc. Chem. Res. 33, 647–657 (2000)

    Article  CAS  Google Scholar 

  17. Akutagawa, T., Shitagami, K., Aonuma, M., Noro, S.-I., Nakamura, T.: Ferromagnetic and antiferromagnetic coupling of [Ni(dmit)2] anion layers induced by Cs +2 (benzo[18]crown-6)3 supramolecule. Inorg. Chem. 48, 4454–4461 (2009)

    Article  CAS  Google Scholar 

  18. Tanaka, K., Tengeiji, A., Kato, T., Toyama, N., Shionoya, M.: A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003)

    Article  CAS  Google Scholar 

  19. Matsui, T., Miyachi, H., Sato, T., Shigeta, Y., Hirao, K.: Structural origin of copper ion containing artificial DNA: a density functional study. J. Phys. Chem. B 112, 16960–16965 (2008)

    Article  CAS  Google Scholar 

  20. Itoh, K.: Electron spin resonance of an aromatic hydrocarbon in its quintet ground state. Chem. Phys. Lett. 1, 235–238 (1967)

    Article  CAS  Google Scholar 

  21. Mataga, N.: Possible “ferromagnetic states” of some hypothetical hydrocarbons. Theoret. Chim. Acta (Berl.) 10, 372–376 (1968)

    Article  CAS  Google Scholar 

  22. Itoh, K.: Electronic structures of aromatic hydrocarbons with high spin multiplicities in the electronic ground state. Pure Appl. Chem. 50, 1251–1259 (1978)

    Article  CAS  Google Scholar 

  23. Ovchinnikov, A.A.: Multiplicity of the ground state of large alternant organic molecules with conjugated bonds (Do organic ferromagnetics exist?). Theoret. Chim. Acta (Berl.) 47, 297–304 (1978)

    Article  CAS  Google Scholar 

  24. Tyutyulkov, N., Schuster, P., Polansky, O.: Band structure of nonclassical polymers. Theoret. Chim. Acta (Berl.) 63, 291–304 (1983)

    Article  CAS  Google Scholar 

  25. Sugawara, T., Murata, S., Kimura, K., Iwamura, H., Sugawara, Y., Iwasaki, H.: Design of molecular assembly of diphenylcarbenes having ferromagnetic intermolecular interactions. J. Am. Chem. Soc. 107, 5293–5294 (1985)

    Article  CAS  Google Scholar 

  26. Sugawara, T., Bandow, S., Kimura, K., Iwamura, H., Itoh, K.: Magnetic behavior of nonet tetracarbene, m-phenylenebis((diphenylmethylen-3-yl)methylene). J. Am. Chem. Soc. 106, 6449–6450 (1984)

    Article  CAS  Google Scholar 

  27. Sugawara, T., Bandow, S., Kimura, K., Iwamura, H., Itoh, K.: Magnetic behavior of nonet tetracarbene as a model for one-dimensional organic ferromagnets. J. Am. Chem. Soc. 108, 368–371 (1986)

    Article  CAS  Google Scholar 

  28. Teki, Y., Takui, T., Itoh, K., Iwamura, H., Kobayashi, K.: Preparation and ESR detection of a ground-state nonet hydrocarbon as a model for one-dimensional organic ferromagnets. J. Am. Chem. Soc. 108, 2147–2156 (1986)

    Article  CAS  Google Scholar 

  29. Izuoka, A., Murata, S., Sugawara, T., Iwamura, H.: Molecular design and model experiments of ferromagnetic intermolecular interaction in the assembly of high-spin organic molecules. Generation and characterization of the spin states of isomeric bis(phenylmethylenyl)[2.2]paracyclophanes. J. Am. Chem. Soc. 109, 2631–2639 (1987)

    Article  CAS  Google Scholar 

  30. Yamaguchi, K., Toyoda, Y., Fueno, T.: A generalized MO (GMO) approach to unstable molecules with quasi-degenerate electronic states: ab initio GMO calculations of intramolecular effective exchange integrals and designing of organic magnetic polymers. Synth. Met. 19, 81–86 (1987)

    Article  CAS  Google Scholar 

  31. Yamaguchi, K., Toyoda, Y., Nakano, M., Fueno, T.: Ab initio and semiempirical MO calculations of intermolecular effective exchange integrals between organic radicals. Designing of organic ferromagnet, ferrimagnet and ferromagnetic conductors. Synth. Met. 19, 87–92 (1987)

    Article  CAS  Google Scholar 

  32. Fujita, I., Teki, Y., Takui, T., Kinoshita, T., Itoh, K., Miko, F., Sawaki, Y., Iwamura, H., Izuoka, A., Sugawara, T.: Design, preparation, and electron spin resonance detection of a ground-state undecet (S = 5) hydrocarbon. J. Am. Chem. Soc. 112, 4074–4075 (1990)

    Article  CAS  Google Scholar 

  33. Yamaguchi, K., Namimoto, H., Fueno, T., Nogami, T., Shirota, Y.: Possibilities of organic ferromagnets and ferrimagnets by the use of charge-transfer (CT) complexes with radical substituents. Ab initio MO studies. Chem. Phys. Lett. 166, 408–414 (1990)

    Article  CAS  Google Scholar 

  34. Korshak, Y.V., Medvedeva, T.V., Ovchinnikov, A.A., Spector, V.N.: Organic polymer ferromagnet. Nature 326, 370–372 (1987)

    Article  CAS  Google Scholar 

  35. Torrance, J.B., Oostra, S., Nazzal, A.: A new, simple model for organic ferromagnetism and the first organic ferromagnet. Synth. Met. 19, 709–714 (1987)

    Article  CAS  Google Scholar 

  36. Miller, J.S., Epstein, A.J., Reiff, W.M.: Molecular/organic ferromagnets. Science 240, 40–47 (1988)

    Article  CAS  Google Scholar 

  37. Miller, J.S., Epstein, A.J., Reiff, W.M.: Molecular ferromagnets. Acc. Chem. Res. 21, 114–120 (1988)

    Article  CAS  Google Scholar 

  38. Miller, J.S., Epstein, A.J., Reiff, W.M.: Ferromagnetic molecular charge-transfer complexes. Chem. Rev. 88, 201–220 (1988)

    Article  CAS  Google Scholar 

  39. Ovchinnikov, A.A., Spector, V.N.: Organic ferromagnets. New results. Synth. Met. 27, 615–624 (1988)

    Article  Google Scholar 

  40. Decurtins, S., Gutlich, P., Hasselbach, K., Hauser, A., Spiering, H.: Light-induced excited-spin-state trapping in iron (II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorg. Chem. 24, 2174–2178 (1985)

    Article  CAS  Google Scholar 

  41. Miller, T.J.E.: Brushless Permanent-Magnet and Reluctance Motor Drives. Oxford University Press, New York (1989)

    Google Scholar 

  42. Matsushita, M., Nakamura, T., Momose, T., Shida, T., Teki, Y., Takui, T., Kinoshita, T., Itoh, K.: Novel organic ions of high-spin state. 2. Determination of the spin multiplicity of the ground state and 1H-ENDOR study of the monoanion of m-phenylenebis (phenylmethylene). J. Am. Chem. Soc. 114, 7470–7475 (1992)

    Article  CAS  Google Scholar 

  43. Teki, Y., Fujita, I., Takui, T., Kinoshita, T., Itoh, K.: Topology and spin alignment in a novel organic high-spin molecule, 3, 4′-Bis (phenylmethylene) biphenyl, as studied by ESR and a generalized UHF Hubbard calculation. J. Am. Chem. Soc. 116, 11499–11505 (1994)

    Article  CAS  Google Scholar 

  44. Mitani, M., Takano, Y., Yoshioka, Y., Yamaguchi, K.: Density functional study of intramolecular ferromagnetic interaction through m-phenylene coupling unit. III. Possibility of high-spin polymer. J. Chem. Phys. 111, 1309 (1999)

    Article  CAS  Google Scholar 

  45. Dietz, F., Tyutyulkov, N.: Photoswitching of the magnetic properties of one-dimensional π-electron systems. Part II. Conjugated polymers with di-hetarylethene and benzylidene-anthrone fragments in the elementary units. Phys. Chem. Chem. Phys. 3, 4600–4605 (2001)

    Article  CAS  Google Scholar 

  46. Dietz, F., Tyutyulkov, N.: Organic polymers with indirect magnetic interaction caused by the molecular topology of the elementary units. Chem. Phys. 264, 37–51 (2001)

    Article  CAS  Google Scholar 

  47. Matsuoka, F., Yamashita, Y., Kawakami, T., Kitagawa, Y., Yoshioka, Y., Yamaguchi, K.: Theoretical investigation on the magnetic interaction of the tetrathiafulvalene–nitronyl nitroxide stacking model: possibility of organic magnetic metals and magnetic superconductors. Polyhedron 20, 1169–1176 (2001)

    Article  CAS  Google Scholar 

  48. Teki, Y., Miyamoto, S., Nakatsuji, M., Miura, Y.: π-Topology and spin alignment utilizing the excited molecular field: Observation of the excited high-spin quartet (S = 3/2) and quintet (S = 2) states on purely organic π-conjugated spin systems. J. Am. Chem. Soc. 123, 294–305 (2001)

    Article  CAS  Google Scholar 

  49. Tyutyulkov, N., Staneva, M., Stoyanova, A., Alaminova, D., Olbrich, G., Dietz, F.: Structure and magnetic interaction in organic radical crystals. 6. Spin-transfer crystals: a theoretical study. J. Phys. Chem. B 106, 2901–2909 (2002)

    Article  CAS  Google Scholar 

  50. Nakano, M., Kishi, R., Nakagawa, N., Ohta, S., Takahashi, H., Furukawa, S.-I., Kamada, K., Ohta, K., Champagne, B., Botek, E.: Second hyperpolarizabilities (γ) of bisimidazole and bistriazole benzenes: diradical character, charged state, and spin state dependences. J. Phys. Chem. A 110, 4238–4243 (2006)

    Article  CAS  Google Scholar 

  51. Minami, T., Ito, S., Nakano, M.: Signature of singlet open-shell character on the optically allowed singlet excitation energy and singlet-triplet energy gap. J. Phys. Chem. A 117, 2000–2006 (2013)

    Article  CAS  Google Scholar 

  52. Miller, J.S., Calabrese, J.C., McLean, R.S., Epstein, A.J.: meso-(Tetraphenylporphinato) manganese (III)-tetracyanoethenide, [MnIIITPP]::⊕[TCNE].⊖. A new structure-type linear-chain magnet with a Tc of 18K. Adv. Mater. 4, 498–501 (1992)

    Google Scholar 

  53. Stumpf, H.O., Ouahab, L., Pei, Y., Grandjean, D., Kahn, O.: A molecular-based magnet with a fully interlocked three-dimensional structure. Science 261, 447–447 (1993)

    Google Scholar 

  54. Decurtins, S., Schmalle, H.W., Oswald, H.R., Linden, A., Ensling, J., Gütlich, P., Hauser, A.: A polymeric two-dimensional mixed-metal network. Crystal structure and magnetic properties of {[P(Ph)4][MnCr(ox)3]}. Inorg. Chim. Acta 216, 65–73 (1994)

    Article  CAS  Google Scholar 

  55. Matsuda, K., Nakamura, N., Inoue, K., Koga, N., Iwamura, H.: Toward dendritic two-dimensional polycarbenes: syntheses of ‘Starburst’-type nona-and dodecadiazo compounds and magnetic study of their photoproducts. Bull. Chem. Soc. Jpn. 69, 1483–1494 (1996)

    Article  CAS  Google Scholar 

  56. Hatlevik, Ø., Buschmann, W.E., Zhang, J., Manson, J.L., Miller, J.S.: Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate (III) magnet to 99 C (372 K). Adv. Mater. 11, 914–918 (1999)

    Article  CAS  Google Scholar 

  57. Boldog, I., Gaspar, A.B., Martinez, V., Pardo-Ibanez, P., Ksenofontov, V., Bhattacharjee, A., Gutlich, P., Real, J.A.: Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew. Chem. Int. Ed. Engl. 120, 6533–6537 (2008)

    Article  Google Scholar 

  58. Rajca, A.: Organic diradicals and polyradicals: from spin coupling to magnetism? Chem. Rev. 94, 871–893 (1994)

    Article  CAS  Google Scholar 

  59. Rajca, A., Rajca, S., Wongsriratanakul, J.: Very high-spin organic polymer: π-conjugated hydrocarbon network with average spin of S ≥ 40. J. Am. Chem. Soc. 121, 6308–6309 (1999)

    Article  CAS  Google Scholar 

  60. Rajca, A., Olankitwanit, A., Wang, Y., Boratynski, P.J., Pink, M., Rajca, S.: High-spin S = 2 ground state aminyl tetraradicals. J. Am. Chem. Soc. 135, 18205–18215 (2013)

    Article  CAS  Google Scholar 

  61. Gallagher, N.M., Olankitwanit, A., Rajca, A.: High-spin organic molecules. J. Org. Chem. 80, 1291–1298 (2015)

    Article  CAS  Google Scholar 

  62. Ciccullo, F., Gallagher, N.M., Geladari, O., Chasse, T., Rajca, A., Casu, M.B.: A derivative of the blatter radical as a potential metal-free magnet for stable thin films and interfaces. ACS Appl. Mater. Interfaces 8, 1805–1812 (2016)

    Article  CAS  Google Scholar 

  63. Nishide, H., Kaneko, T., Igarashi, M., Tsuchida, E., Yoshioka, N., Lahti, P.M.: Magnetic characterization and computational modeling of poly (phenylacetylenes) bearing stable radical groups. Macromolecules 27, 3082–3086 (1994)

    Article  CAS  Google Scholar 

  64. Nishide, H.: High-spin alignment in π-conjugated polyradicals: a magnetic polymer. Adv. Mater. 7, 937–941 (1995)

    Article  CAS  Google Scholar 

  65. Nishide, H., Kaneko, T., Nii, T., Katoh, K., Tsuchida, E., Yamaguchi, K.: Through-bond and long-range ferromagnetic spin alignment in a π-conjugated polyradical with a poly (phenylenevinylene) skeleton. J. Am. Chem. Soc. 117, 548–549 (1995)

    Article  CAS  Google Scholar 

  66. Nishide, H., Kaneko, T., Nii, T., Katoh, K., Tsuchida, E., Lahti, P.M.: Poly (phenylenevinylene)-attached phenoxyl radicals: ferromagnetic interaction through planarized and π-conjugated skeletons. J. Am. Chem. Soc. 118, 9695–9704 (1996)

    Article  CAS  Google Scholar 

  67. Nishide, H., Miyasaka, M., Tsuchida, E.: Average octet radical polymer: a stable polyphenoxyl with star-shaped π conjugation. Angew. Chem. Int. Ed. 37, 2400–2402 (1998)

    Article  Google Scholar 

  68. Nishide, H., Ozawa, T., Miyasaka, M., Tsuchida, E.: A nanometer-sized high-spin polyradical: Poly (4-phenoxyl-1, 2-phenylenevinylene) planarily extended in a non-Kekulé fashion and its magnetic force microscopic images. J. Am. Chem. Soc. 123, 5942–5946 (2001)

    Article  CAS  Google Scholar 

  69. Kaneko, T., Makino, T., Miyaji, H., Teraguchi, M., Aoki, T., Miyasaka, M., Nishide, H.: Ladderlike ferromagnetic spin coupling network on a π-conjugated pendant polyradical. J. Am. Chem. Soc. 125, 3554–3557 (2003)

    Article  CAS  Google Scholar 

  70. Michinobu, T., Inui, J., Nishide, H.: m-Phenylene-linked aromatic poly (aminium cationic radical) s: persistent high-spin organic polyradicals. Org. Lett. 5, 2165–2168 (2003)

    Article  CAS  Google Scholar 

  71. Nishide, H., Iwasa, S., Pu, Y.-J., Suga, T., Nakahara, K., Satoh, M.: Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim. Acta 50, 827–831 (2004)

    Article  CAS  Google Scholar 

  72. Fukuzaki, E., Nishide, H.: Room-temperature high-spin organic single molecule: nanometer-sized and hyperbranched poly [1, 2, (4)-phenylenevinyleneanisylaminium]. J. Am. Chem. Soc. 128, 996–1001 (2006)

    Article  CAS  Google Scholar 

  73. Kurata, T., Koshika, K., Kato, F., Kido, J., Nishide, H.: An unpaired electron-based hole-transporting molecule: triarylamine-combined nitroxide radicals. Chem. Commun. 2986–2988 (2007)

    Google Scholar 

  74. Oyaizu, K., Ando, Y., Konishi, H., Nishide, H.: Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J. Am. Chem. Soc. 130, 14459–14461 (2008)

    Article  CAS  Google Scholar 

  75. Oyaizu, K., Suga, T., Yoshimura, K., Nishide, H.: Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules 41, 6646–6652 (2008)

    Article  CAS  Google Scholar 

  76. Oyaizu, K., Nishide, H.: Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339–2344 (2009)

    Article  CAS  Google Scholar 

  77. Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K., Nishide, H.: Emerging N-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009)

    Article  CAS  Google Scholar 

  78. Suga, T., Sugita, S., Ohshiro, H., Oyaizu, K., Nishide, H.: p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv. Mater. 23, 751–754 (2011)

    Article  CAS  Google Scholar 

  79. Fukuzaki, E., Nishide, H.: 2, 6, 10-Tris (dianisylaminium)-3, 7, 11-tris (hexyloxy) triphenylene: a robust quartet molecule at room temperature. Org. Lett. 8, 1835–1838 (2006)

    Article  CAS  Google Scholar 

  80. Murata, H., Miyajima, D., Nishide, H.: A high-spin and helical organic polymer: Poly {[4-(dianisylaminium) phenyl] acetylene}. Macromolecules 39, 6331–6335 (2006)

    Article  CAS  Google Scholar 

  81. Iwamura, H.: What role has organic chemistry played in the development of molecule-based magnets? Polyhedron 66, 3–14 (2013)

    Article  CAS  Google Scholar 

  82. Mayhall, N.J., Head-Gordon, M.: Computational quantum chemistry for multiple-site heisenberg spin couplings made simple: still only one spin-flip required. J. Phys. Chem. Lett. 6, 1982–1988 (2015)

    Article  CAS  Google Scholar 

  83. Dotti, N., Heintze, E., Slota, M., Hübner, R., Wang, F., Nuss, J., Dressel, M., Bogani, L.: Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds. Phys. Rev. B 93, 165201 (2016)

    Article  CAS  Google Scholar 

  84. Mañeru, D.R., de Moreira, I.P.R., Illas, F.: Helical folding-induced stabilization of ferromagnetic polyradicals based on triarylmethyl radical derivatives. J. Am. Chem. Soc. 138, 5271–5275 (2016)

    Google Scholar 

  85. Nam, Y., Cho, D., Lee, J.Y.: Doping effect on edge-terminated ferromagnetic graphene nanoribbons. J. Phys. Chem. C 120, 11237–11244 (2016)

    Article  CAS  Google Scholar 

  86. Lahti, P.M.: Magnetic properties of organic materials. Marcel Dekker Inc, New York (1999)

    Google Scholar 

  87. Aoki, Y., Imamura, A.: A simple rule to find nondisjoint NBMO degenerate systems for designing high-spin organic molecules. Int. J. Quant. Chem. 74, 491–502 (1999)

    Article  CAS  Google Scholar 

  88. Borden, W.T., Davidson, E.R.: Effects of electron repulsion in conjugated hydrocarbon diradicals. J. Am. Chem. Soc. 99, 4587–4594 (1977)

    Article  CAS  Google Scholar 

  89. Longuet-Higgins, H.C.: Some studies in molecular orbital theory I. Resonance structures and molecular orbitals in unsaturated hydrocarbons. J. Chem. Phys. 18, 265–274 (1950)

    Article  CAS  Google Scholar 

  90. Greenwood, H.H.: Molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 20, 1653 (1952)

    Article  CAS  Google Scholar 

  91. Potts, R.B.: Molecular orbital theory of alternant hydrocarbons. J. Chem. Phys. 21, 758 (1953)

    Article  CAS  Google Scholar 

  92. Crowe, R.W., Devins, J.C.: Sparking potential and molecular structure of unsaturated hydrocarbon gases. J. Chem. Phys. 33, 413–418 (1960)

    Article  CAS  Google Scholar 

  93. Sovers, O., Kauzmann, W.: Role of d-hybridization in the Pi molecular orbitals of unsaturated hydrocarbons. J. Chem. Phys. 38, 813–824 (1963)

    Article  CAS  Google Scholar 

  94. Ferguson, A.F., Pople, J.A.: Molecular orbital theory of diamagnetism. V. Anisotropies of some aromatic hydrocarbon molecules. J. Chem. Phys. 42, 1560–1562 (1965)

    Article  CAS  Google Scholar 

  95. Kekulé, A.: Untersuchungen über aromatische Verbindungen Ueber die Constitution der aromatischen Verbindungen. I. Ueber die Constitution der aromatischen Verbindungen. Justus Liebigs Annalen der Chemie 137, 129–196 (1866)

    Article  Google Scholar 

  96. Borden, W.T., Iwamura, H., Berson, J.A.: Violations of Hund’s rule in non-Kekulé hydrocarbons: theoretical prediction and experimental verification. Acc. Chem. Res. 27, 109–116 (1994)

    Article  CAS  Google Scholar 

  97. Cui, Z.H., Gupta, A., Lischka, H., Kertesz, M.: Concave or convex π-dimers: the role of the pancake bond in substituted phenalenyl radical dimers. Phys. Chem. Chem. Phys. 17, 23963–23969 (2015)

    Article  CAS  Google Scholar 

  98. Ito, S., Nakano, M.: Theoretical molecular design of heteroacenes for singlet fission: tuning the diradical character by modifying π-conjugation length and aromaticity. J. Phys. Chem. C 119, 148–157 (2015)

    Article  CAS  Google Scholar 

  99. Das, A., Müller, T., Plasser, F., Lischka, H.: Polyradical character of triangular Non-Kekulé structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in comparison: an extended multireference study. J. Phys. Chem. A 120, 1625–1636 (2016)

    Article  CAS  Google Scholar 

  100. Heitler, W., London, F.: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44, 455–472 (1927)

    Article  CAS  Google Scholar 

  101. Hund, F.: Linienspektren und Periodisches System der Elemente. Springer, Berlin (1927)

    Book  Google Scholar 

  102. Hund, F.: Zur Deutung der Molekelspektren. IV. Zeitschrift für Physik 51, 759–795 (1928)

    Article  CAS  Google Scholar 

  103. Miller, J.S., Dixon, D.A., Calabrese, J.C.: Crystal structure of Hexaazaoctadecahydrocoronene Dication [HAOC]2+ a singlet benzene dication. Science 240, 1185–1188 (1988)

    Article  CAS  Google Scholar 

  104. Heisenberg, W.: Mehrkörperproblem und Resonanz in der Quantenmechanik. Zeitschrift für Physik 38, 411–426 (1926)

    Article  Google Scholar 

  105. Kawakami, T., Yamanaka, S., Mori, W., Yamaguchi, K., Kajiwara, A., Kamachi, M.: No-overlap and orientation principle for ferromagnetic interactions between nitroxide groups. Chem. Phys. Lett. 235, 414–421 (1995)

    Article  CAS  Google Scholar 

  106. Yamaguchi, K., Fukui, H., Fueno, T.: Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers. Chem. Lett. 15, 625–628 (1986)

    Article  Google Scholar 

  107. Yamaguchi, K., Takahara, Y., Fueno, T.: Ab-initio molecular orbital studies of structure and reactivity of transition metal-oxo compounds. In: Applied Quantum Chemistry, pp. 155–184. Springer, New York (1986)

    Google Scholar 

  108. Yamaguchi, K., Takahara, Y., Fueno, T., Nasu, K.: Ab initio MO calculations of effective exchange integrals between transition-metal ions via oxygen dianions: nature of the copper-oxygen bonds and superconductivity. Jpn. J. Appl. Phys. 26, L1362 (1987)

    Article  CAS  Google Scholar 

  109. Yamaguchi, K., Jensen, F., Dorigo, A., Houk, K.: A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals. Chem. Phys. Lett. 149, 537–542 (1988)

    Article  CAS  Google Scholar 

  110. Yamaguchi, K., Toyoda, Y., Fueno, T.: Ab initio calculations of effective exchange integrals for triplet carbene clusters. Importance of stacking modes for ferromagnetic interactions. Chem. Phys. Lett. 159, 459–464 (1989)

    Article  CAS  Google Scholar 

  111. Yamaguchi, K., Okumura, M., Mori, W., Maki, J., Takada, K., Noro, T., Tanaka, K.: Comparison between spin restricted and unrestricted post-Hartree—Fock calculations of effective exchange integrals in Ising and Heisenberg models. Chem. Phys. Lett. 210, 201–210 (1993)

    Article  CAS  Google Scholar 

  112. Nishino, M., Yamanaka, S., Yoshioka, Y., Yamaguchi, K.: Theoretical approaches to direct exchange couplings between divalent chromium ions in naked dimers, tetramers, and clusters. J. Phys. Chem. A 101, 705–712 (1997)

    Article  CAS  Google Scholar 

  113. Kitagawa, Y., Saito, T., Nakanishi, Y., Kataoka, Y., Matsui, T., Kawakami, T., Okumura, M., Yamaguchi, K.: Spin contamination error in optimized geometry of singlet Carbene (1A1) by broken-symmetry method. J. Phys. Chem. A 113, 15041–15046 (2009)

    Article  CAS  Google Scholar 

  114. McConnell, H.M.: Ferromagnetism in solid free radicals. J. Chem. Phys. 39, 1910 (1963)

    Article  CAS  Google Scholar 

  115. McConnell, H.M.: Proceedings of the Robert A. Welch Foundation. Conf. Chem. Res. 11, 144 (1967)

    Google Scholar 

  116. Misra, A., Schmalz, T.G., Klein, D.J.: Clar theory for radical benzenoids. J. Chem. Inf. Model. 49, 2670–2676 (2009)

    Article  CAS  Google Scholar 

  117. Hatanaka, M.: Stability criterion for organic ferromagnetism. Theor. Chem. Acc. 129, 151–160 (2011)

    Article  CAS  Google Scholar 

  118. Hoffmann, R., Imamura, A., Hehre, W.J.: Benzynes, dehydroconjugated molecules, and the interaction of orbitals separated by a number of intervening σ bonds. J. Am. Chem. Soc. 90, 1499–1509 (1968)

    Article  CAS  Google Scholar 

  119. Bischof, P., Gleiter, R., Haider, R.: Through-bond interaction of two mutually perpendicular π systems. A comparison with spiroconjugation. J. Am. Chem. Soc. 100, 1036–1042 (1978)

    Article  CAS  Google Scholar 

  120. Post, A.J., Nash, J.J., Love, D.E., Jordan, K.D., Morrison, H.: Organic photochemistry. 107. Photochemical activation of distal functional groups in polyfunctional molecules. Photochemistry and photophysics of the syn-7- and anti-7-chlorobenzonorbornenes. J. Am. Chem. Soc. 117, 4930–4935 (1995)

    Article  CAS  Google Scholar 

  121. Lomas, J.S.: 1H NMR study of through-bond and through-space effects in the hetero-association of pyridine with alkane diols. J. Phys. Org. Chem. 24, 129–139 (2011)

    Article  CAS  Google Scholar 

  122. Oka, Y., Inoue, K., Kumagai, H., Kurmoo, M.: Long-range magnetic ordering at 5.5 K for cobalt(II)-hydroxide diamond chains isolated by 17 Å with α-phenylcinnamate. Inorg. Chem. 52, 2142–2149 (2013)

    Article  CAS  Google Scholar 

  123. Breslow, R.: Stable 4n PI electron triplet molecules. Pure Appl. Chem. 54, 927–938 (1982)

    Article  CAS  Google Scholar 

  124. Awaga, K., Sugano, T., Kinoshita, M.: Ferromagnetic intermolecular interaction in the galvinoxyl radical: cooperation of spin polarization and charge-transfer interaction. Chem. Phys. Lett. 141, 540–544 (1987)

    Article  CAS  Google Scholar 

  125. Sugawara, T., Tukada, H., Izuoka, A., Murata, S., Iwamura, H.: Magnetic interaction among diphenylmethylene molecules generated in crystals of some diazodiphenylmethanes. J. Am. Ceram. Soc. 108, 4272–4278 (1986)

    CAS  Google Scholar 

  126. Takano, Y., Taniguchi, T., Isobe, H., Kubo, T., Morita, Y., Yamamoto, K., Nakasuji, K., Takui, T., Yamaguchi, K.: Hybrid density functional theory studies on the magnetic interactions and the weak covalent bonding for the phenalenyl radical dimeric pair. J. Am. Chem. Soc. 124, 11122–11130 (2002)

    Article  CAS  Google Scholar 

  127. Soriano, M.R., Tsobnang, F., Méhauté, A.L., Wimmer, E.: Study of ferromagnetic properties of molecular magnets based on aminonaphthalenesulfonic acid and aniline. Synth. Met. 76, 317–321 (1996)

    Article  CAS  Google Scholar 

  128. Alberola, A., Less, R.J., Pask, C.M., Rawson, J.M., Palacio, F., Oliete, P., Paulsen, C., Yamaguchi, A., Farley, R.D., Murphy, D.M.: A thiazyl-based organic ferromagnet. Angew. Chem. Int. Ed. Engl. 42, 4782–4785 (2003)

    Article  CAS  Google Scholar 

  129. Ivanova, A., Baumgarten, M., Karabunarliev, S., Tyutyulkov, N.: Design of ferromagnetic alternating stacks of neutral and ion-radical hydrocarbons. Phys. Chem. Chem. Phys. 5, 4932–4937 (2003)

    Article  CAS  Google Scholar 

  130. Takeda, R., Takano, Y., Kitagawa, Y., Kawakami, T., Yamashita, Y., Matsuoka, F., Yamaguchi, K.: Theoretical studies on contributions of SOMO–SOMO and other couplings to the magnetic interaction in radical clusters. Synth. Met. 133–134, 593–595 (2003)

    Article  CAS  Google Scholar 

  131. Fujita, W., Awaga, K.: Crystal structure and magnetic properties of a thiazyl organic ferromagnet, BBDTA GaCl4 with Tc = 7.0 K. Chem. Phys. Lett. 388, 186–189 (2004)

    Article  CAS  Google Scholar 

  132. Minkov, I., Tadjer, A.: Magnetic interactions in nonalternant mixed molecular radical crystals and mixed ion radical crystals. Int. J. Quant. Chem. 99, 667–676 (2004)

    Article  CAS  Google Scholar 

  133. Zhu, L., Yao, K.L., Liu, Z.L.: The electronic structure and the ferromagnetic intermolecular interactions in the crystal of TEMPO radicals. J. Magn. Magn. Mater. 301, 301–307 (2006)

    Article  Google Scholar 

  134. Deumal, M., LeRoux, S., Rawson, J.M., Robb, M.A., Novoa, J.J.: A theoretical study of the magnetism of the α-p-cyano-tetrafluorophenyl-dithiadiazolyl radical using a first principles bottom-up procedure. Polyhedron 26, 1949–1958 (2007)

    Article  CAS  Google Scholar 

  135. Kinoshita, M., Turek, P., Tamura, M., Nozawa, K., Shiomi, D., Nakazawa, Y., Ishikawa, M., Takahashi, M., Awaga, K., Inabe, T., Maruyama, Y.: An organic radical ferromagnet. Chem. Lett. 20, 1225–1228 (1991)

    Article  Google Scholar 

  136. Okumura, M., Kitagawa, Y., Kawakami, T., Yamaguchi, K.: Theoretical calculations of the pressure effect for the β-phase of p-NPNN. Polyhedron 28, 1898–1902 (2009)

    Article  CAS  Google Scholar 

  137. Kawakami, T., Taniguchi, T., Nakano, S., Kitagawa, Y., Yamaguchi, K.: Theoretical studies on magnetic interactions in many types of organic donor salts: BEDT-TTF, BETS. TMTTF TMTSF. Polyhedron 22, 2051–2065 (2003)

    Article  CAS  Google Scholar 

  138. Fukutome, H., Takahashi, A., Ozaki, M.-A.: Design of conjugated polymers with polaronic ferromagnetism. Chem. Phys. Lett. 133, 34–38 (1987)

    Google Scholar 

  139. Klein, D.J., Nelin, C.J., Alexander, S., Matsen, F.A.: High-spin hydrocarbons. J. Chem. Phys. 77, 3101–3108 (1982)

    Article  CAS  Google Scholar 

  140. Teki, Y., Takui, T., Itoh, K., Iwamura, H., Kobayashi, K.: Design, preparation and ESR detection of a ground-state nonet hydrocarbon as a model for one-dimensional organic ferromagnets. J. Am. Chem. Soc. 105, 3722–3723 (1983)

    Article  CAS  Google Scholar 

  141. Ishida, T., Iwamura, H.: Bis[3-tert-butyl-5-(N-oxy-tert-butylamino)phenyl] nitroxide in a quartet ground state: a prototype for persistent high-spin poly[(oxyimino)-1,3-phenylenes]. J. Am. Chem. Soc. 113, 4238–4241 (1991)

    Article  CAS  Google Scholar 

  142. Lahti, P.M., Ichimura, A.S.: Semiempirical study of electron exchange interaction in organic high-spin π-systems. Classifying structural effects in organic magnetic molecules. J. Org. Chem. 56, 3030–3042 (1991)

    Article  CAS  Google Scholar 

  143. Pranata, J.: Spin preferences of conjugated polyradicals: the disjoint NBMO analysis. J. Am. Chem. Soc. 114, 10537–10541 (1992)

    Article  CAS  Google Scholar 

  144. Yoshizawa, K., Tanaka, K., Yamabe, T.: Ferromagnetic coupling through m-phenylene. Molecular and crystal orbital study. J. Phys. Chem. 98, 1851–1855 (1994)

    Article  CAS  Google Scholar 

  145. Li, S., Ma, J., Jiang, Y.: Electron correlation and magnetism: a simple molecular orbital approach for predicting ground-state spins of conjugated hydrocarbons. J. Phys. Chem. A 101, 5587–5592 (1997)

    Article  CAS  Google Scholar 

  146. Tukada, H., Mochizuki, K.: Long-range magnetic interactions in trans-1,4-Cyclohexylene- and 1,3-Adamantylene-bis(p-nitrenylbenzene) by π-σ-π hyperconjugation. Org. Lett. 3, 3305–3308 (2001)

    Article  CAS  Google Scholar 

  147. Shil, S., Misra, A.: Photoinduced antiferromagnetic to ferromagnetic crossover in organic systems. J. Phys. Chem. A 114, 2022–2027 (2010)

    Article  CAS  Google Scholar 

  148. Ivanov, C.I., Olbrich, G., Barentzen, H., Polansky, O.E.: Magnetic properties of alternate nonclassical polymers: the elementary excitation spectrum. Phys. Rev. B 36, 8712–8718 (1987)

    Article  CAS  Google Scholar 

  149. Li, J., Tang, A.: Ab initio UHF crystal-orbital studies on ferromagnetic polymers. Chem. Phys. Lett. 170, 359–363 (1990)

    Article  CAS  Google Scholar 

  150. Matsumoto, T., Ishida, T., Koga, N., Iwamura, H.: Intramolecular magnetic coupling between two nitrene or two nitroxide units through 1,1-diphenylethylene chromophores. Isomeric dinitrenes and dinitroxides related in connectivity to trimethylenemethane, tetramethyleneethane, and pentamethylenepropane. J. Am. Chem. Soc. 114, 9952–9959 (1992)

    Article  CAS  Google Scholar 

  151. Miura, Y., Matsumoto, M., Ushitani, Y., Teki, Y., Takui, T., Itoh, K.: Magnetic and optical characterization of poly(ethynylbenzene) with pendant nitroxide radicals. Macromolecules 26, 6673–6675 (1993)

    Article  CAS  Google Scholar 

  152. Yamaguchi, K., Okumura, M., Maki, J., Noro, T.: High-spin ion radicals of polyenes and polyamines. A MO theoretical study. Chem. Phys. Lett. 207, 9–14 (1993)

    Article  CAS  Google Scholar 

  153. Tanaka, H.: Magnetism of spin polymers prepared by the oxidative polyrecombination of captodative compounds. Macromol. Symp. 84, 137–143 (1994)

    Article  CAS  Google Scholar 

  154. Tanaka, K., Ago, H., Yamabe, T.: Design of ferromagnetic polymers involving organosilicon moieties. Synth. Met. 72, 225–229 (1995)

    Article  CAS  Google Scholar 

  155. Dannenberg, J.J., Liotard, D., Halvick, P., Rayez, J.C.: Theoretical studies of high-spin organic molecules. 1. Enhanced coupling between multiple unpaired electrons. J. Phys. Chem. 100, 9631–9637 (1996)

    Article  CAS  Google Scholar 

  156. Tyutyulkov, N., Baumgarten, M., Dietz, F.: Polaronic high-spin π-conjugated 1-D polymers with polymethine radicals within the elementary units. Chem. Phys. Lett. 353, 231–238 (2002)

    Article  CAS  Google Scholar 

  157. Kaneko, T., Makino, T., Miyaji, H., Teraguchi, M., Aoki, T., Miyasaka, M., Nishide, H.: Ladderlike ferromagnetic spin coupling network on a π-conjugated pendant polyradical. J. Am. Chem. Soc. 125, 3554–3557 (2003)

    Article  CAS  Google Scholar 

  158. Zaidi, N.A., Giblin, S.R., Terry, I., Monkman, A.P.: Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer 45, 5683–5689 (2004)

    Article  CAS  Google Scholar 

  159. Ma, H., Liu, C., Zhang, C., Jiang, Y.: Theoretical study of very high spin organic π-conjugated polyradicals. J. Phys. Chem. A 111, 9471–9478 (2007)

    Article  CAS  Google Scholar 

  160. Fu, H.H., Yao, K.L., Liu, Z.L.: Magnetic properties of very-high-spin organic π-conjugated polymers based on Green’s function theory. J. Chem. Phys. 129, 134706 (2008)

    Article  CAS  Google Scholar 

  161. Hatanaka, M.: Magnetism in disjoint/non-disjoint composite bands. Chem. Phys. 392, 90–95 (2012)

    Article  CAS  Google Scholar 

  162. Qu, Z., Zhang, S., Liu, C., Malrieu, J.P.: Communication: a dramatic transition from nonferromagnet to ferromagnet in finite fused-azulene chain. J. Chem. Phys. 134, 021101 (2011)

    Article  CAS  Google Scholar 

  163. Zhanga, J., Wang, R., Wang, L., Baumgarten, M.: Using triazine as coupling unit for intramolecular ferromagnetic coupling of multiradicals. Chem. Phys. 246, 209–215 (1999)

    Article  Google Scholar 

  164. Dias, J.R.: Disjoint molecular orbitals in nonalternant conjugated diradical hydrocarbons. J. Chem. Inf. Comput. Sci. 43, 1494–1501 (2003)

    Article  CAS  Google Scholar 

  165. Miyasaka, M., Saito, Y., Nishide, H.: Magnetic force microscopy images of a nanometer-sized, purely organic high-spin polyradical. Adv. Funct. Mater. 13, 113–117 (2003)

    Article  CAS  Google Scholar 

  166. Hirai, K., Kamiya, E., Itoh, T., Tomioka, H.: A dendrimer approach to high-spin polycarbenes. Conversion of connectivity from disjoint to non-disjoint by perturbation of nonbonding molecular orbital coefficients. Org. Lett. 8, 1847–1850 (2006)

    Article  CAS  Google Scholar 

  167. Álvarez Collado, J.R.: Calculation of the atomic spin densities and energy band gaps of carbon high-spin aromatic (pi) large macromolecular systems. J. Chem. Phys. 129, 154703 (2008)

    Article  CAS  Google Scholar 

  168. Ito, A., Ino, H., Tanaka, K.: Electronic structures of newly designed two-dimensional high-spin organic polymers. Polyhedron 28, 2080–2086 (2009)

    Article  CAS  Google Scholar 

  169. Li, X., Wang, Q., Jena, P.: Ferromagnetism in two-dimensional carbon chains linked by 1,3,5-benzenetriyl units. J. Phys. Chem. C 115, 19621–19625 (2011)

    Article  CAS  Google Scholar 

  170. Hatanaka, M.: Wannier analysis of magnetic graphenes. Chem. Phys. Lett. 484, 276–282 (2010)

    Article  CAS  Google Scholar 

  171. Wang, M., Li, C.M.: Magnetic properties of all-carbon graphene-fullerene nanobuds. Phys. Chem. Chem. Phys. 13, 5945–5951 (2011)

    Article  CAS  Google Scholar 

  172. Philpott, M.R., Kawazoe, Y.: Graphene nanodots with intrinsically magnetic protrusions. J. Chem. Phys. 136, 064706 (2012)

    Article  CAS  Google Scholar 

  173. San-Fabiín, E., Moscardó, F.: Polarized-unpolarized ground state of small polycyclic aromatic hydrocarbons. Int. J. Quant. Chem. 113, 815–819 (2013)

    Article  CAS  Google Scholar 

  174. Kawakami, T., Takeda, S., Mori, W., Yamaguchi, K.: Theoretical study of the effective exchange interactions between nitroxides via hydrogen atoms. Chem. Phys. Lett. 261, 129–137 (1996)

    Article  CAS  Google Scholar 

  175. Maruta, G., Takeda, S., Imachi, R., Ishida, T., Nogami, T., Yamaguchi, K.: Solid-state high-resolution 1H and 2D NMR study of the electron spin density distribution of the hydrogen-bonded organic ferromagnetic compound 4-hydroxyimino-TEMPO. J. Am. Chem. Soc. 121, 424–431 (1999)

    Article  CAS  Google Scholar 

  176. Daigoku, K., Okada, A., Nakada, K.: Theoretical study of intermolecular spin alignments through hydrogen bonding of the carboxy group. Chem. Phys. Lett. 430, 221–226 (2006)

    Article  CAS  Google Scholar 

  177. Mishima, A., Nasu, K.: Ferromagnetism in a new type of organic polymer based on benzene rings bridged by carbons. Synth. Met. 22, 23–33 (1987)

    Article  CAS  Google Scholar 

  178. Wang, W.Z., Liu, Z.L., Yao, K.L.: Interchain coupling model for quasi-one-dimensional π-conjugated organic ferromagnets. Phys. Rev. B 55, 12989–12994 (1997)

    Article  CAS  Google Scholar 

  179. Yoshizawa, K., Kuga, T., Sato, T., Hatanaka, M., Tanaka, K., Yamabe, T.: Through-bond and through-space interactions of organic radicals coupled by m-phenylene. Bull. Chem. Soc. Jpn. 69, 3443–3450 (1996)

    Article  CAS  Google Scholar 

  180. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31, 253–258 (1924)

    Article  Google Scholar 

  181. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  CAS  Google Scholar 

  182. Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952)

    Article  Google Scholar 

  183. Okabe, Y.: Statistical Mechanics, 3rd edn. Shokado, Tokyo (2003)

    Google Scholar 

  184. Hansda, S., Pal, A.K., Datta, S.N.: Ferromagnetic nature of silicon-substituted meta-xylylene polyradicals. J. Phys. Chem. C 119, 3754–3761 (2015)

    Article  CAS  Google Scholar 

  185. Datta, S.N., Pal, A.K., Hansda, S., Latif, I.A.: On the photomagnetism of nitronyl nitroxide, imino nitroxide, and verdazyl-substituted azobenzene. J. Phys. Chem. A 116, 3304–3311 (2012)

    Article  CAS  Google Scholar 

  186. Saito, T., Ito, A., Watanabe, T., Kawakami, T., Okumura, M., Yamaguchi, K.: Performance of the coupled cluster and DFT methods for through-space magnetic interactions of nitroxide dimer. Chem. Phys. Lett. 542, 19–25 (2012)

    Article  CAS  Google Scholar 

  187. Nishizawa, S., Hasegawa, J.-Y., Matsuda, K.: Theoretical investigation of the β value of the π-conjugated molecular wires by evaluating exchange interaction between organic radicals. J. Phys. Chem. C 117, 26280–26286 (2013)

    Article  CAS  Google Scholar 

  188. Bhattacharya, D., Shil, S., Goswami, T., Misra, A., Panda, A., Klein, D.J.: A theoretical study on magnetic properties of bis-TEMPO diradicals with possible application. Comp. Theor. Chem. 1024, 15–23 (2013)

    Article  CAS  Google Scholar 

  189. Fukui, K., Yonezawa, T., Shingu, H.: A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 20, 722 (1952)

    Article  CAS  Google Scholar 

  190. Fukui, K., Yonezawa, T., Nagata, C., Shingu, H.: Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J. Chem. Phys. 22, 1433–1442 (1954)

    Article  CAS  Google Scholar 

  191. Imamura, A., Aoki, Y., Maekawa, K.: A theoretical synthesis of polymers by using uniform localization of molecular orbitals: proposal of an elongation method. J. Chem. Phys. 95, 5419–5431 (1991)

    Article  CAS  Google Scholar 

  192. Aoki, Y., Gu, F.L.: An elongation method for large systems toward bio-systems. Phys. Chem. Chem. Phys. 14, 7640–7668 (2012)

    Article  CAS  Google Scholar 

  193. Korchowiec, J., Gu, F.L., Aoki, Y.: Elongation method at restricted open-shell Hartree-Fock level of theory. Int. J. Quant. Chem. 105, 875–882 (2005)

    Article  CAS  Google Scholar 

  194. Zhu, X., Aoki, Y.: Development of minimized mixing molecular orbital method for designing organic ferromagnets. J. Comput. Chem. 36, 1232–1239 (2015)

    Article  CAS  Google Scholar 

  195. Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M.: Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701–706 (1999)

    Article  CAS  Google Scholar 

  196. Fedorov, D.G., Kitaura, K.: Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J. Phys. Chem. A 111, 6904–6914 (2007)

    Article  CAS  Google Scholar 

  197. Fedorov, D.G., Nagata, T., Kitaura, K.: Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012)

    Article  CAS  Google Scholar 

  198. Nakano, T., Kaminuma, T., Sato, T., Fukuzawa, K., Akiyama, Y., Uebayasi, M., Kitaura, K.: Fragment molecular orbital method: use of approximate electrostatic potential. Chem. Phys. Lett. 351, 475–480 (2002)

    Article  CAS  Google Scholar 

  199. Mochizuki, Y., Koikegami, S., Amari, S., Segawa, K., Kitaura, K., Nakano, T.: Configuration interaction singles method with multilayer fragment molecular orbital scheme. Chem. Phys. Lett. 406, 283–288 (2005)

    Article  CAS  Google Scholar 

  200. Chiba, M., Fedorov, D.G., Kitaura, K.: Time-dependent density functional theory with the multilayer fragment molecular orbital method. Chem. Phys. Lett. 444, 346–350 (2007)

    Article  CAS  Google Scholar 

  201. Chiba, M., Fedorov, D.G., Kitaura, K.: Time-dependent density functional theory based upon the fragment molecular orbital method. J. Chem. Phys. 127, 104108 (2007)

    Article  CAS  Google Scholar 

  202. Mochizuki, Y., Tanaka, K., Yamashita, K., Ishikawa, T., Nakano, T., Amari, S., Segawa, K., Murase, T., Tokiwa, H., Sakurai, M.: Parallelized integral-direct CIS(D) calculations with multilayer fragment molecular orbital scheme. Theor. Chem. Acc. 117, 541–553 (2007)

    Article  CAS  Google Scholar 

  203. Chiba, M., Fedorov, D.G., Kitaura, K.: Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. J. Comput. Chem. 29, 2667–2676 (2008)

    Article  CAS  Google Scholar 

  204. Chiba, M., Fedorov, D.G., Nagata, T., Kitaura, K.: Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method. Chem. Phys. Lett. 474, 227–232 (2009)

    Article  CAS  Google Scholar 

  205. Chiba, M., Koido, T.: Electronic excitation energy calculation by the fragment molecular orbital method with three-body effects. J. Chem. Phys. 133, 044113 (2010)

    Article  CAS  Google Scholar 

  206. Pruitt, S.R., Fedorov, D.G., Kitaura, K., Gordon, M.S.: Open-shell formulation of the fragment molecular orbital method. J. Chem. Theory Comput. 6, 1–5 (2010)

    Article  CAS  Google Scholar 

  207. Yang, W.: Direct calculation of electron density in density-functional theory: implementation for benzene and a tetrapeptide. Phys. Rev. A 44, 7823–7826 (1991)

    Article  CAS  Google Scholar 

  208. Yang, W.: Direct calculation of electron density in density-functional theory. Phys. Rev. Lett. 66, 1438–1441 (1991)

    Article  CAS  Google Scholar 

  209. Zhao, Q., Yang, W.: Analytical energy gradients and geometry optimization in the divide-and-conquer method for large molecules. J. Chem. Phys. 102, 9598–9603 (1995)

    Article  CAS  Google Scholar 

  210. Yang, W., Lee, T.-S.: A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 103, 5674–5678 (1995)

    Article  CAS  Google Scholar 

  211. Kobayashi, M., Akama, T., Nakai, H.: Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. J. Chem. Phys. 125, 204106 (2006)

    Article  CAS  Google Scholar 

  212. Kobayashi, M., Imamura, Y., Nakai, H.: Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. J. Chem. Phys. 127, 074103 (2007)

    Article  CAS  Google Scholar 

  213. Kobayashi, M., Nakai, H.: Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. J. Chem. Phys. 129, 044103 (2008)

    Article  CAS  Google Scholar 

  214. Kobayashi, M., Nakai, H.: Dual-level hierarchical scheme for linear-scaling divide-and-conquer correlation theory. Int. J. Quant. Chem. 109, 2227–2237 (2009)

    Article  CAS  Google Scholar 

  215. Kobayashi, M., Nakai, H.: Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. J. Chem. Phys. 131, 114108 (2009)

    Article  CAS  Google Scholar 

  216. Kobayashi, M., Nakai, H.: How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method. Phys. Chem. Chem. Phys. 14, 7629–7639 (2012)

    Article  CAS  Google Scholar 

  217. Kobayashi, M., Yoshikawa, T., Nakai, H.: Divide-and-conquer self-consistent field calculation for open-shell systems: implementation and application. Chem. Phys. Lett. 500, 172–177 (2010)

    Article  CAS  Google Scholar 

  218. Nakai, H., Kobayashi, M.: Linear-scaling electronic structure calculation program based on divide-and-conquer method. Procedia Comput. Sci. 4, 1145–1150 (2011)

    Article  Google Scholar 

  219. Yoshikawa, T., Kobayashi, M., Nakai, H.: Linear-scaling divide-and-conquer second-order Møller-Plesset perturbation calculation for open-shell systems: implementation and application. Theor. Chem. Acc. 130, 411–417 (2011)

    Article  CAS  Google Scholar 

  220. Chan, G.K.-L., Dorando, J.J., Ghosh, D., Hachmann, J., Neuscamman, E., Wang, H., Yanai, T.: An introduction to the Density Matrix Renormalization Group Ansatz in quantum chemistry. In: Frontiers in quantum systems in chemistry and physics, vol. 18, pp. 49–65. Springer, New York (2008)

    Google Scholar 

  221. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  CAS  Google Scholar 

  222. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993)

    Article  CAS  Google Scholar 

  223. Mitrushenkov, A.O., Fano, G., Ortolani, F., Linguerri, R., Palmieri, P.: Quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 115, 6815 (2001)

    Article  CAS  Google Scholar 

  224. Chan, G.K.-L., Head-Gordon, M.: Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group. J. Chem. Phys. 116, 4462 (2002)

    Article  CAS  Google Scholar 

  225. Legeza, Ö., Röder, J., Hess, B.: Controlling the accuracy of the density-matrix renormalization-group method: the dynamical block state selection approach. Phys. Rev. B 67, 125114 (2003)

    Article  CAS  Google Scholar 

  226. Moritz, G., Reiher, M.: Decomposition of density matrix renormalization group states into a Slater determinant basis. J. Chem. Phys. 126, 244109 (2007)

    Article  CAS  Google Scholar 

  227. Zgid, D., Nooijen, M.: On the spin and symmetry adaptation of the density matrix renormalization group method. J. Chem. Phys. 128, 014107 (2008)

    Article  CAS  Google Scholar 

  228. Ghosh, D., Hachmann, J., Yanai, T., Chan, G.K.: Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene. J. Chem. Phys. 128, 144117 (2008)

    Article  CAS  Google Scholar 

  229. Mizukami, W., Kurashige, Y., Yanai, T.: Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations. J. Chem. Phys. 133, 091101 (2010)

    Article  CAS  Google Scholar 

  230. Kurashige, Y., Yanai, T.: High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. J. Chem. Phys. 130, 234114 (2009)

    Article  CAS  Google Scholar 

  231. Kurashige, Y., Yanai, T.: Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. J. Chem. Phys. 135, 094104 (2011)

    Article  CAS  Google Scholar 

  232. Kurashige, Y., Chalupsky, J., Lan, T.N., Yanai, T.: Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group. J. Chem. Phys. 141, 174111 (2014)

    Article  CAS  Google Scholar 

  233. Saitow, M., Kurashige, Y., Yanai, T.: Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys. 139, 044118 (2013)

    Article  CAS  Google Scholar 

  234. Yanai, T., Kurashige, Y., Mizukami, W., Chalupský, J., Lan, T.N., Saitow, M.: Density matrix renormalization group for ab initio Calculations and associated dynamic correlation methods: a review of theory and applications. Int. J. Quant. Chem. 115, 283–299 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Aoki .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aoki, Y., Orimoto, Y., Imamura, A. (2017). Survey of Organic Magnetism. In: Quantum Chemical Approach for Organic Ferromagnetic Material Design. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-49829-4_1

Download citation

Publish with us

Policies and ethics