Skip to main content

NMDA Receptor in Bone

  • Chapter
  • First Online:
The NMDA Receptors

Part of the book series: The Receptors ((REC,volume 30))

Abstract

A view that l-glutamic acid (Glu) plays a role as an excitatory amino acid neurotransmitter through mechanisms relevant to activities of a variety of signaling machineries essential for the neurocrine at synapses in the brain is prevailing. Although expression of functional receptors is an absolute requirement for the glutamatergic signal input in the brain, recent molecular biological and pharmacological studies including ours give rise to a novel concept for Glu as an extracellular signal mediator in the autocrine and/or paracrine system in several non-neuronal tissues outside the brain. We have demonstrated functional expression of a variety of glutamatergic signaling machineries by bone-forming osteoblasts and mechano-sensing osteocytes in bone, in addition to chondrocytes in cartilage, which are all derived from primitive mesenchymal stem cells in bone marrows. We could also detect functional expression of the cystine/Glu antiporter comprised of both xCT and 4F2hc subunits, rather than any other glutamatergic signaling machineries, by bone-resorbing osteoclasts believed to originate in hematopoietic stem cells. On the basis of these findings, we would propose a universal role of Glu as an extracellular signal mediator in the neurocrine, autocrine and paracrine systems in our body. Clinical aspect is also discussed on dietary Glu intake with a focus on possible benefits for the prophylaxis and/or treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

dl-α-amino-3-hydroxy-5-methylisoxasole-4-propionate

EAAC1:

Excitatory amino acid carrier 1

EAAT:

Excitatory amino acid transporter

GLAST:

Glutamate aspartate transporter

GLT-1:

Glutamate transporter-1

Glu:

Glutamate

GluR:

Glutamate receptor

GSH:

Reduced glutathione

iGluR:

Ionotropic glutamate receptor

KA:

Kainate

M-CSF:

Macrophage-colony stimulating factor

mGluR:

Metabotropic glutamate receptor

MK-801:

Dizocilpine

MNCs:

Multinucleated cells

MSCs:

Mesenchymal stem cells

NMDA:

N-methyl-d-aspartate

NMDAR:

N-methyl-d-aspartate receptor

RA:

Rheumatoid arthritis

RANK:

Receptor activator of NF-κB

RANKL:

Receptor activator of NF-κB ligand

Runx2:

Runt-related transcription factor-2

TRAP:

Tartrate resistant acid phosphatase

VGLUT:

Vesicular glutamate transporter

References

  1. Yoneda Y, Ogita K. Localization of [3H]glutamate binding sites in rat adrenal medulla. Brain Res. 1986a;383:387–91.

    Article  CAS  PubMed  Google Scholar 

  2. Yoneda Y, Ogita K. [3H]Glutamate binding sites in the rat pituitary. Neurosci Res. 1986b;3:430–5.

    Article  CAS  PubMed  Google Scholar 

  3. Govitrapong P, Ebadi M, Murrin LC. Identification of a Cl−/Ca2+-dependent glutamate (quisqualate) binding site in bovine pineal organ. J Pineal Res. 1986;3:223–34.

    Article  CAS  PubMed  Google Scholar 

  4. Luzzi S, Zilletti L, Franchi-Micheli AM, Moroni F. Agonists, antagonists, and modulators of excitatory amino acid receptors in the guinea-pig myenteric plexus. Br J Pharmacol. 1988;95:1271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moroni F, Luzzi S, Franchi-Micheli S, Zilletti L. The presence of N-methyl-D-aspartate-type receptors for glutamic acid in the guinea-pig myenteric plexus. Neurosci Lett. 1986;68:57–62.

    Article  CAS  PubMed  Google Scholar 

  6. Shannon HE, Sawyer BD. Glutamate receptors of N-methyl-D-aspartate subtype in the myenteric plexus of guinea-pig ileum. J Pharmacol Exp Ther. 1989;251:518–23.

    CAS  PubMed  Google Scholar 

  7. Aas P, Tanso R, Fonnum F. Stimulation of peripheral cholinergic nerves by glutamate indicates a new peripheral glutamate receptor. Eur J Pharmacol. 1989;164:93–102.

    Article  CAS  PubMed  Google Scholar 

  8. Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. Eur J Biochem. 2004;271:1–13.

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164:247–56.

    Article  CAS  PubMed  Google Scholar 

  10. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364–70.

    Article  CAS  PubMed  Google Scholar 

  11. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD. Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone. 1998;22:295–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mentaverri R, Kamel S, Wattel A, Prouillet C, Sevenet N, Petit JP, Tordjmann T, Brazier M. Regulation of bone resorption and osteoclast survival by nitric oxide: possible involvement of NMDA-receptor. J Cell Biochem. 2003;88:1145–56.

    Article  CAS  PubMed  Google Scholar 

  13. Peet NM, Grabowski PS, Laketic-Ljubojevic I, Skerry TM. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J. 1999;13:2179–85.

    CAS  PubMed  Google Scholar 

  14. Laketic-Ljubojevic I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM. Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone. 1999;25:631–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hinoi E, Fujimori S, Yoneda Y. Modulation of cellular differentiation by N-methyl-D-aspartate receptors in osteoblasts. FASEB J. 2003;17:1532–4.

    CAS  PubMed  Google Scholar 

  16. Hinoi E, Fujimori S, Takemori A, Kurabayashi H, Nakamura Y, Yoneda Y. Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts. Brain Res. 2002a;943:112–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hinoi E, Fujimori S, Takarada T, Taniura H, Yoneda Y. Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts. Biochem Biophys Res Commun. 2002b;297:452–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gu Y, Publicover SJ. Expression of functional metabotropic glutamate receptors in primary cultured rat osteoblasts. Cross-talk with n-methyl-d-aspartate receptors. J Biol Chem. 2000;275:34252–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hinoi E, Fujimori S, Nakamura Y, Yoneda Y. Group III metabotropic glutamate receptors in rat cultured calvarial osteoblasts. Biochem Biophys Res Commun. 2001;281:341–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gray C, Marie H, Arora M, Tanaka K, Boyde A, Jones S, Attwell D. Glutamate does not play a major role in controlling bone growth. J Bone Miner Res. 2001;16:742–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mason DJ, Suva LJ, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM. Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone. 1997;20:199–205.

    Article  CAS  PubMed  Google Scholar 

  22. Huggett J, Vaughan-Thomas A, Mason D. The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett. 2000;485:13–8.

    Article  CAS  PubMed  Google Scholar 

  23. Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55:287–99.

    Article  CAS  PubMed  Google Scholar 

  24. Fujita H, Hinoi E, Nakatani E, Yamamoto T, Takarada T, Yoneda Y. Possible modulation of process extension by N-methyl-D-aspartate receptor expressed in osteocytic MLO-Y4 cells. J Pharmacol Sci. 2012;119:112–6.

    Article  CAS  PubMed  Google Scholar 

  25. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone. 1999;25:623–9.

    Article  CAS  PubMed  Google Scholar 

  26. Morimoto R, Uehara S, Yatsushiro S, Juge N, Hua Z, Senoh S, Echigo N, Hayashi M, Mizoguchi T, Ninomiya T, Udagawa N, Omote H, Yamamoto A, Edwards RH, Moriyama Y. Secretion of L-glutamate from osteoclasts through transcytosis. EMBO J. 2006;25:4175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinoi E, Takarada T, Uno K, Inoue M, Murafuji Y, Yoneda Y. Glutamate suppresses osteoclastogenesis through the cystine/glutamate antiporter. Am J Pathol. 2007;170:1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Hinoi E, Takemori A, Takarada T, Yoneda Y. Abolition of chondral mineralization by group III metabotropic glutamate receptors expressed in rodent cartilage. Br J Pharmacol. 2005a;146:732–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Hinoi E, Takemori A, Yoneda Y. Release of endogenous glutamate by AMPA receptors expressed in cultured rat costal chondrocytes. Biol Pharm Bull. 2005b;28:990–3.

    Article  CAS  PubMed  Google Scholar 

  30. Hinoi E, Wang L, Takemori A, Yoneda Y. Functional expression of particular isoforms of excitatory amino acid transporters by rodent cartilage. Biochem Pharmacol. 2005a;70:70–81.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Hinoi E, Takemori A, Nakamichi N, Yoneda Y. Glutamate inhibits chondral mineralization through apoptotic cell death mediated by retrograde operation of the cystine/glutamate antiporter. J Biol Chem. 2006;281:24553–65.

    Article  CAS  PubMed  Google Scholar 

  32. Hinoi E, Ohashi R, Miyata S, Kato Y, Iemata M, Hojo H, Takarada T, Yoneda Y. Excitatory amino acid transporters expressed by synovial fibroblasts in rats with collagen-induced arthritis. Biochem Pharmacol. 2005b;70:1744–55.

    Article  CAS  PubMed  Google Scholar 

  33. Hinoi E, Yoneda Y. Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis. J Pharmacol Sci. 2011;116:248–56.

    Article  CAS  PubMed  Google Scholar 

  34. McNearney T, Speegle D, Lawand N, Lisse J, Westlund KN. Excitatory amino acid profiles of synovial fluid from patients with arthritis. J Rheumatol. 2000;27:739–45.

    CAS  PubMed  Google Scholar 

  35. Lawand NB, McNearney T, Westlund KN. Amino acid release into the knee joint: key role in nociception and inflammation. Pain. 2000;86:69–74.

    Article  CAS  PubMed  Google Scholar 

  36. McNearney T, Baethge BA, Cao S, Alam R, Lisse JR, Westlund KN. Excitatory amino acids, TNF-alpha, and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol. 2004;137:621–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riedijk MA, de Gast-Bakker DH, Wattimena JL, Van Goudoever JB. Splanchnic oxidation is the major metabolic fate of dietary glutamate in enterally fed preterm infants. Pediatr Res. 2007;62:468–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author is highly indebted to all colleagues listed in the references cited in this chapter for their excellent and enthusiastic efforts to support experimental studies for a period from 1999 to 2015 in Laboratory of Molecular Pharmacology, Kanazawa University Graduate School.

Conflict of interest:

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Yoneda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yoneda, Y. (2017). NMDA Receptor in Bone. In: Hashimoto, K. (eds) The NMDA Receptors. The Receptors, vol 30. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49795-2_8

Download citation

Publish with us

Policies and ethics