Skip to main content

Overview of the NMDA Receptor

  • Chapter
  • First Online:
The NMDA Receptors

Part of the book series: The Receptors ((REC,volume 30))

Abstract

The N-methyl-d-aspartate receptor (NMDAR) is a glutamate-gated ion channel that is critically involved in physiological and pathological functions in the central nervous system (CNS). Over the last 25 years, molecular biological studies revealed the molecular diversity of NMDAR subunits, the structural basis of NMDAR functions, and the in vivo functions of NMDAR subunits. Because NMDAR is involved in many diseases including neurodegenerative and psychiatric disorders, development of NMDAR-selective agonists and antagonists have great therapeutic potentials. In this chapter, I present an overview of the structure and function of NMDAR from molecular biological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

APV:

D-2-Amino-5-phosphono-valerate

ATD:

Amino-terminal domain

CNS:

Central nervous system

CTD:

Carboxy-terminal domain

GluR:

Glutamate receptor

KO:

Gene knockout

LBD:

Ligand-binding domain

LTP:

Long-term potentiation

NMDA:

N-methyl- d-aspartate

PSD:

Postsynaptic density

References

  1. Watkins JC. The synthesis of some acidic amino acids possessing neuropharmacological activity. J Med Pharm Chem. 1962;91:1187–99.

    Article  CAS  PubMed  Google Scholar 

  2. Curtis DR, Watkins JC. Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol. 1963;166:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9.

    Article  CAS  PubMed  Google Scholar 

  4. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983;334:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319:774–6.

    Article  CAS  PubMed  Google Scholar 

  6. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991;354:31–7.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt C, Hollmann M. Apparent homomeric NR1 currents observed in Xenopus oocytes are caused by an endogenous NR2 subunit. J Mol Biol. 2008;376:658–70. doi:10.1016/j.jmb.2007.11.105.

    Article  CAS  PubMed  Google Scholar 

  8. Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M. Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett. 1992;300:39–45.

    Article  CAS  PubMed  Google Scholar 

  9. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S. Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun. 1992;185:826–32.

    Article  CAS  PubMed  Google Scholar 

  10. Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron. 1993;10:943–54.

    Article  CAS  PubMed  Google Scholar 

  11. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357:70–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M. Molecular diversity of the NMDA receptor channel. Nature. 1992;358:36–41.

    Article  CAS  PubMed  Google Scholar 

  13. Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M. Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett. 1992;313:34–8.

    Article  CAS  PubMed  Google Scholar 

  14. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem. 1993;268:2836–43.

    CAS  PubMed  Google Scholar 

  16. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci. 1995;15:6498–508.

    CAS  PubMed  Google Scholar 

  17. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci. 1995;15:6509–20.

    CAS  PubMed  Google Scholar 

  18. Matsuda K, Kamiya Y, Matsuda S, Yuzaki M. Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res. 2002;100:43–52.

    Article  CAS  PubMed  Google Scholar 

  19. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415:793–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology. 1995;34:1219–37.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong J, Russell SL, Pritchett DB, Molinoff PB, Williams K. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol Pharmacol. 1994;45:846–53.

    CAS  PubMed  Google Scholar 

  22. Laurie DJ, Seeburg PH. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci. 1994;14:3180–94.

    CAS  PubMed  Google Scholar 

  23. Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26.

    Article  CAS  PubMed  Google Scholar 

  24. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci. 2000;3:661–9.

    Article  CAS  PubMed  Google Scholar 

  25. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–96. doi:10.1124/pr.109.002451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–92.

    Article  CAS  PubMed  Google Scholar 

  27. Salussolia CL, Prodromou ML, Borker P, Wollmuth LP. Arrangement of subunits in functional NMDA receptors. J Neurosci. 2011;31:11295–304. doi:10.1523/JNEUROSCI.5612-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smothers CT, Woodward JJ. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther. 2007;322:739–48.

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe M, Inoue Y, Sakimura K, Mishina M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport. 1992;3:1138–40.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe M, Inoue Y, Sakimura K, Mishina M. Distinct distributions of five N-methyl-D-aspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol. 1993;338:377–90.

    Article  CAS  PubMed  Google Scholar 

  31. Wong HK, Liu XB, Matos MF, Chan SF, Pérez-Otaño I, Boysen M, Cui J, Nakanishi N, Trimmer JS, Jones EG, Lipton SA, Sucher NJ. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol. 2002;450:303–17.

    Article  CAS  PubMed  Google Scholar 

  32. Moriyama Y, Hayashi M. Glutamate-mediated signaling in the islets of Langerhans: a thread entangled. Trends Pharmacol Sci. 2003;24:511–7.

    Article  CAS  PubMed  Google Scholar 

  33. Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O, Klemen MS, Stožer A, Wnendt S, Piemonti L, Köhler M, Ferrer J, Thorens B, Schliess F, Rupnik MS, Heise T, Berggren PO, Klöcker N, Meissner T, Mayatepek E, Eberhard D, Kragl M, Lammert E. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med. 2015;21:363–72. doi:10.1038/nm.3822.

    Article  CAS  PubMed  Google Scholar 

  34. Gill SS, Pulido OM, Mueller RW, McGuire PF. Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull. 1998;46:429–34.

    Article  CAS  PubMed  Google Scholar 

  35. Szczesniak AM, Gilbert RW, Mukhida M, Anderson GI. Mechanical loading modulates glutamate receptor subunit expression in bone. Bone. 2005;37:63–73.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153:86–100. doi:10.1016/j.cell.2013.02.051.

    Article  CAS  PubMed  Google Scholar 

  37. Cousins SL, Innocent N, Stephenson FA. Neto1 associates with the NMDA receptor/amyloid precursor protein complex. J Neurochem. 2013;126:554–64. doi:10.1111/jnc.12280.

    Article  CAS  PubMed  Google Scholar 

  38. Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 2000;103:945–56.

    Article  CAS  PubMed  Google Scholar 

  39. Mellone M, Pelucchi S, Alberti L, Genazzani AA, Di Luca M, Gardoni F. Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density. J Neurochem. 2015;132:159–68. doi:10.1111/jnc.12968.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci. 2009;29:12045–58. doi:10.1523/JNEUROSCI.1365-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karakas E, Simorowski N, Furukawa H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 2009;28:3910–20. doi:10.1038/emboj.2009.338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835–7.

    Article  CAS  PubMed  Google Scholar 

  43. Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15:3952–69.

    CAS  PubMed  Google Scholar 

  44. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K. The presence of free D-serine in rat brain. FEBS Lett. 1992;296:33–6.

    Article  CAS  PubMed  Google Scholar 

  45. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A. 1999;96:13409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD, Rogawski MA, Snyder SH. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97:4926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mothet JP, Le Bail M, Billard JM. Time and space profiling of NMDA receptor co-agonist functions. J Neurochem. 2015;135:210–25. doi:10.1111/jnc.13204.

    Article  CAS  PubMed  Google Scholar 

  48. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O'Hara PJ, Heinemann SF. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron. 1994;13:1345–57.

    Article  CAS  PubMed  Google Scholar 

  49. Hansen KB, Tajima N, Risgaard R, Perszyk RE, Jørgensen L, Vance KM, Ogden KK, Clausen RP, Furukawa H, Traynelis SF. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors. Mol Pharmacol. 2013;84:114–27. doi:10.1124/mol.113.085803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 2008;27:2158–70. doi:10.1038/emboj.2008.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao Y, Belcher J, Berger AJ, Mayer ML, Lau AY. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure. 2013;21:1788–99. doi:10.1016/j.str.2013.07.011.

    Article  CAS  PubMed  Google Scholar 

  52. Mori H, Masaki H, Yamakura T, Mishina M. Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature. 1992;358:673–5.

    Article  CAS  PubMed  Google Scholar 

  53. Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Günther W, Seeburg PH, Sakmann B. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science. 1992;257:1415–9.

    Article  CAS  PubMed  Google Scholar 

  54. Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport. 1993;4:687–90.

    Article  CAS  PubMed  Google Scholar 

  55. Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K. Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol. 2002;61:533–45.

    Article  CAS  PubMed  Google Scholar 

  56. Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci. 2001;4:587–96.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron. 2009;64:213–26. doi:10.1016/j.neuron.2009.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344:992–7. doi:10.1126/science.1251915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, Gouaux E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511:191–7. doi:10.1038/nature13548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Regan MC, Romero-Hernandez A, Furukawa H. A structural biology perspective on NMDA receptor pharmacology and function. Curr Opin Struct Biol. 2015;33:68–75. doi:10.1016/j.sbi.2015.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan JI, Connor JA, Curran T. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron. 1994;13:325–38.

    Article  CAS  PubMed  Google Scholar 

  62. Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell. 1994;76:427–37.

    Article  CAS  PubMed  Google Scholar 

  63. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87:1327–38.

    Article  CAS  PubMed  Google Scholar 

  64. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell. 1996;87:1339–49.

    Article  CAS  PubMed  Google Scholar 

  65. Huerta PT, Sun LD, Wilson MA, Tonegawa S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron. 2000;25:473–80.

    Article  CAS  PubMed  Google Scholar 

  66. Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu RS, Itohara S. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature. 2000;406:726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, Mishina M. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature. 1995;373:151–5.

    Article  CAS  PubMed  Google Scholar 

  69. Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit. J Neurosci. 1998;18:6704–12.

    CAS  PubMed  Google Scholar 

  70. Kishimoto Y, Kawahara S, Mori H, Mishina M, Kirino Y. Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit epsilon 1. Eur J Neurosci. 2001;13:1221–7.

    Article  CAS  PubMed  Google Scholar 

  71. Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron. 1996;16:333–44.

    Article  CAS  PubMed  Google Scholar 

  72. Mori H, Manabe T, Watanabe M, Satoh Y, Suzuki N, Toki S, Nakamura K, Yagi T, Kushiya E, Takahashi T, Inoue Y, Sakimura K, Mishina M. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron. 1998;21:571–80.

    Article  CAS  PubMed  Google Scholar 

  73. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ. Genetic enhancement of learning and memory in mice. Nature. 1999;401:63–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT. Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci. 1996;16:5014–25.

    CAS  PubMed  Google Scholar 

  75. Kadotani H, Hirano T, Masugi M, Nakamura K, Nakao K, Katsuki M, Nakanishi S. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci. 1996;16:7859–67.

    CAS  PubMed  Google Scholar 

  76. Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SG, Eilers J, Konnerth A, Li J, McNamara JO, Seeburg PH. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell. 1998;92:279–89.

    Article  CAS  PubMed  Google Scholar 

  77. Ikeda K, Araki K, Takayama C, Inoue Y, Yagi T, Aizawa S, Mishina M. Reduced spontaneous activity of mice defective in the epsilon 4 subunit of the NMDA receptor channel. Brain Res Mol Brain Res. 1995;33:61–71.

    Article  CAS  PubMed  Google Scholar 

  78. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci. 2002;22:2335–42.

    CAS  PubMed  Google Scholar 

  79. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature. 1998;393:377–81.

    Article  CAS  PubMed  Google Scholar 

  80. Niemann S, Kanki H, Fukui Y, Takao K, Fukaya M, Hynynen MN, Churchill MJ, Shefner JM, Bronson RT, Brown Jr RH, Watanabe M, Miyakawa T, Itohara S, Hayashi Y. Genetic ablation of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes. Eur J Neurosci. 2007;26:1407–20.

    Article  PubMed  Google Scholar 

  81. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1:623–34.

    Article  CAS  PubMed  Google Scholar 

  82. Olney JW. Excitotoxin-mediated neuron death in youth and old age. Prog Brain Res. 1990;86:37–51.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69–75. doi:10.1016/j.neuropharm.2013.03.030.

    Article  CAS  PubMed  Google Scholar 

  84. Morikawa E, Mori H, Kiyama Y, Mishina M, Asano T, Kirino T. Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor. J Neurosci. 1998;18:9727–32.

    CAS  PubMed  Google Scholar 

  85. During MJ, Symes CW, Lawlor PA, Lin J, Dunning J, Fitzsimons HL, Poulsen D, Leone P, Xu R, Dicker BL, Lipski J, Young D. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science. 2000;287:1453–60.

    Article  CAS  PubMed  Google Scholar 

  86. Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer’s disease—a focus on NMDA receptors. Neuropharmacology. 2014;76:16–26. doi:10.1016/j.neuropharm.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  88. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006;26:365–84.

    Article  CAS  PubMed  Google Scholar 

  89. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98:427–36.

    Article  CAS  PubMed  Google Scholar 

  90. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci. 2001;21:750–7.

    CAS  PubMed  Google Scholar 

  91. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83. doi:10.1038/nn.2447.

    Article  CAS  PubMed  Google Scholar 

  92. Heresco-Levy U, Javitt DC. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res. 2004;66:89–96.

    Article  PubMed  Google Scholar 

  93. Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des. 2010;16:522–37.

    Article  CAS  PubMed  Google Scholar 

  94. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  95. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  96. Zarate Jr CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  97. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, Dessain SK, Rosenfeld MR, Balice-Gordon R, Lynch DR. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8. doi:10.1016/S1474-4422(08)70224-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, Honig LS, Benseler SM, Kawachi I, Martinez-Hernandez E, Aguilar E, Gresa-Arribas N, Ryan-Florance N, Torrents A, Saiz A, Rosenfeld MR, Balice-Gordon R, Graus F, Dalmau J. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65. doi:10.1016/S1474-4422(12)70310-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74. doi:10.1016/S1474-4422(10)70253-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, Parsons TD, Lynch DR, Dalmau J, Balice-Gordon RJ. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010;30:5866–75. doi:10.1523/JNEUROSCI.0167-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takano S, Takahashi Y, Kishi H, Taguchi Y, Takashima S, Tanaka K, Muraguchi A, Mori H. Detection of autoantibody against extracellular epitopes of N-methyl-D-aspartate receptor by cell-based assay. Neurosci Res. 2011;71:294–302. doi:10.1016/j.neures.2011.07.1834.

    Article  CAS  PubMed  Google Scholar 

  103. Sinmaz N, Amatoury M, Merheb V, Ramanathan S, Dale RC, Brilot F. Autoantibodies in movement and psychiatric disorders: updated concepts in detection methods, pathogenicity, and CNS entry. Ann N Y Acad Sci. 2015;1351:22–38. doi:10.1111/nyas.12764.

    Article  CAS  PubMed  Google Scholar 

  104. León-Caballero J, Pacchiarotti I, Murru A, Valentí M, Colom F, Benach B, Pérez V, Dalmau J, Vieta E. Bipolar disorder and antibodies against the N-methyl-d-aspartate receptor: a gate to the involvement of autoimmunity in the pathophysiology of bipolar illness. Neurosci Biobehav Rev. 2015;55:403–12. doi:10.1016/j.neubiorev.2015.05.012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Miss Kiyomi Nakagawa for the preparation of the figures. Parts of this work was supported by a Grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant No. 25293059).

Conflict of Interest

The author declare that I have no conflicts of interst with the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mori, H. (2017). Overview of the NMDA Receptor. In: Hashimoto, K. (eds) The NMDA Receptors. The Receptors, vol 30. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49795-2_1

Download citation

Publish with us

Policies and ethics