Skip to main content

Modularity of Complex Networks Models

  • Conference paper
  • First Online:
Book cover Algorithms and Models for the Web Graph (WAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10088))

Included in the following conference series:

Abstract

Modularity is designed to measure the strength of division of a network into clusters (known also as communities). Networks with high modularity have dense connections between the vertices within clusters but sparse connections between vertices of different clusters. As a result, modularity is often used in optimization methods for detecting community structure in networks, and so it is an important graph parameter from practical point of view. Unfortunately, many existing non-spatial models of complex networks do not generate graphs with high modularity; on the other hand, spatial models naturally create clusters. We investigate this phenomenon by considering a few examples from both sub-classes. We prove precise theoretical results for the classical model of random d-regular graphs as well as the preferential attachment model, and contrast these results with the ones for the spatial preferential attachment (SPA) model that is a model for complex networks in which vertices are embedded in a metric space, and each vertex has a sphere of influence whose size increases if the vertex gains an in-link, and otherwise decreases with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Math. 5, 175–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: On the edge-expansion of graphs. Comb. Prob. Comput. 6, 145–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure with clustered random networks. BMC Bioinform. 10, 405 (2009)

    Article  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(45), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1(4), 311–316 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B.: The isoperimetric number of random regular graphs. Eur. J. Comb. 9, 241–244 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: From the Genome to the Internet, Handbook of Graphs and Networks, pp. 1–34 (2003)

    Google Scholar 

  10. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24, 5–34 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18, 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borgs, C., Brautbar, M., Chayes, J., Khanna, S., Lucier, B.: The power of local information in social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 406–419. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6_30

    Chapter  Google Scholar 

  13. Cooper, C., Frieze, A., Prałat, P.: Some typical properties of the spatial preferred attachment model. Internet Math. 10, 27–47 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  15. Frieze, A., Pérez-Giménez, X., Prałat, P., Reiniger, B.: Perfect matchings and Hamiltonian cycles in the preferential attachment model (preprint)

    Google Scholar 

  16. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  17. da Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.U.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

    Article  Google Scholar 

  18. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks using graphlets. Internet Math. 8(4), 338–363 (2013)

    Article  MathSciNet  Google Scholar 

  20. Janssen, J., Prałat, P., Wilson, R.: Geometric graph properties of the spatial preferred attachment model. Adv. Appl. Math. 50, 243–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Janssen, J., Prałat, P., Wilson, R.: Non-uniform distribution of nodes in the spatial preferential attachment model. Internet Math. 12(1–2), 121–144 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84, 066122 (2011)

    Article  Google Scholar 

  23. McDiarmid, C., Skerman, F.: Modularity in random regular graphs and lattices. Electron. Notes Discrete Math. 43, 431–437 (2013)

    Article  Google Scholar 

  24. McDiarmid, C., Skerman, F.: Modularity of tree-like and random regular graphs (preprint)

    Google Scholar 

  25. Mihail, M., Papadimitriou, C., Saberi, A.: On certain connectivity properties of the internet topology. In: Proceedings of Conference on Foundations of Computer Science, pp. 28–35 (2003)

    Google Scholar 

  26. Montgolfier, F., Soto, M., Viennot, L.: Asymptotic modularity of some graph classes. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 435–444. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25591-5_45

    Chapter  Google Scholar 

  27. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  28. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  29. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  Google Scholar 

  30. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026–113 (2004)

    Google Scholar 

  32. Pittel, B.: Note on the heights of random recursive trees and random \(m\)-ary search trees. Random Struct. Algorithms 5, 337–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Russian Science Foundation (grant number 16-11-10014), NSERC, The Tutte Institute for Mathematics and Computing, and Ryerson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila Ostroumova Prokhorenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ostroumova Prokhorenkova, L., Prałat, P., Raigorodskii, A. (2016). Modularity of Complex Networks Models. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science(), vol 10088. Springer, Cham. https://doi.org/10.1007/978-3-319-49787-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49787-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49786-0

  • Online ISBN: 978-3-319-49787-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics