Advertisement

RNS Applications in Digital Signal Processing

  • Gian Carlo Cardarilli
  • Alberto NannarelliEmail author
  • Marco Re
Chapter

Abstract

In the past decades, the Residue Number System (RNS) has been adopted in DSP as an alternative to the traditional two’s complement number system (TCS) because of the high speed of the obtained architectures and the savings in area and power dissipation. However, with the shrinking of device features and the advent of powerful design tools, the advantages offered by RNS are diminishing.In this chapter, we analyze the state-of-the-art RNS implementation for a number of common Digital Signal Processing (DSP) applications, we compare performance with respect to the TCS and consider trade-offs, and we identify some trends for implementing DSP on ASIC and FPGA platforms.

Keywords

Power Dissipation Digital Signal Processing Finite Impulse Response Filter Chinese Remainder Theorem Design Space Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.V. Ananda Mohan, Residue Number Systems: Algorithms and Architectures. (Kluwer Academic Publishers, New York, 2002)Google Scholar
  2. 2.
    F. Barsi, P. Maestrini, Error correction properties of redundant residue number system. IEEE Trans. Comput. 22, 370–375 (1973)zbMATHGoogle Scholar
  3. 3.
    F. Barsi, P. Maestrini, Error detection and correction by product codes in residue number system. IEEE Trans. Comput. 23, 915–924 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    G.L. Bernocchi, G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Low-power adaptive filter based on RNS components, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2007) (2007), pp. 3211–3214Google Scholar
  5. 5.
    G. Cardarilli, M. Re, R. Lojacono, A residue to binary conversion algorithm for signed numbers, in European Conference on Circuit Theory and Design (ECCTD’97), vol. 3 (1997), pp. 1456–1459Google Scholar
  6. 6.
    G.C. Cardarilli, A. Nannarelli, M. Re, Reducing power dissipation in FIR filters using the residue number system, in Proceedings of 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, vol. 1 (2000), pp. 320–323Google Scholar
  7. 7.
    G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Power characterization of digital filters implemented on FPGA, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2002), vol. 5 (2002), pp. 801–804Google Scholar
  8. 8.
    G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Residue number system reconfigurable datapath, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2002), vol. 2 (2002), pp. 756–759Google Scholar
  9. 9.
    G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Impact of RNS coding overhead on FIR filters performance, in Proceedings of 41st Asilomar Conference on Signals, Systems, and Computers (2007), pp. 1426–1429Google Scholar
  10. 10.
    G.C. Cardarilli, A. Nannarelli, Y. Oster, M. Petricca, M. Re, Design of large polyphase filters in the quadratic residue number system, in Proceedings of 44th Asilomar Conference on Signals, Systems, and Computers (2010), pp. 410–413Google Scholar
  11. 11.
    R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. Express Briefs 51 (1), 26–28 (2004)Google Scholar
  12. 12.
    A. Del Re, A. Nannarelli, M. Re, A tool for automatic generation of RTL-level VHDL description of RNS FIR filters, in Proceedings of 2004 Design, Automation and Test in Europe Conference (DATE) (2004), vol. 48, pp. 686–687Google Scholar
  13. 13.
    M.H. Etzel, W.K. Jenkins, Redundant residue number systems for error detection and correction in digital filters. IEEE Trans. Acoust. Speech Signal Process. 28, 538–544 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    W.K. Jenkins, The design of error checkers for self-checking residue number arithmetic. IEEE Trans. Comput. C-32, 388–396 (1983)CrossRefzbMATHGoogle Scholar
  15. 15.
    W. Jenkins, B. Leon, The use of residue number systems in the design of finite impulse response digital filters. IEEE Trans. Circuits Syst. 24 (4), 191–201 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    J.V. Lopez, J.C. Sanchez, H.P. Meana, Adaptive echo canceller using a modified LMS algorithm, in Proceedings of 2nd International Conference on Electrical and Electronics Engineering (2005), pp. 93–96Google Scholar
  17. 17.
    A. Nannarelli, G.C. Cardarilli, M. Re, Power-delay tradeoffs in residue number system, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2003), vol. 5 (2003), pp. 413–416Google Scholar
  18. 18.
    M. Petricca, P. Albicocco, G.C. Cardarilli, A. Nannarelli, M. Re, Power efficient design of parallel/serial FIR filters in RNS, in Proceedings of 46th Asilomar Conference on Signals, Systems, and Computers (2012), pp. 1015–1019Google Scholar
  19. 19.
    S. Piestrak, A high-speed realization of a residue to binary number system converter. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 42, 661–663 (1995)Google Scholar
  20. 20.
    S. Pontarelli, G.C. Cardarilli, M. Re, A. Salsano, Totally fault tolerant RNS based FIR filters, in 2008 14th IEEE International On-Line Testing Symposium (2008), pp. 192–194Google Scholar
  21. 21.
    D. Radhakrishnan, Y. Yuan, Novel approaches to the design of vlsi RNS multipliers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 39 (1), 52–57 (1992)Google Scholar
  22. 22.
    M. Re, Metodologie di conversione ingresso-uscita in processori in aritmetica finita. Ph.D. thesis, University of Rome Tor Vergata, 1996Google Scholar
  23. 23.
    A. Sengupta, S. Bandyopadhyay, G.A. Jullien, A systolic array for fault tolerant digital signal processing using a residue number system approach, in Proceedings of the International Conference on Systolic Arrays (1988), pp. 577–586Google Scholar
  24. 24.
    M.A. Sodestrand, W.K. Jenkins, G.A. Jullien, F.J. Taylor, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing (IEEE Press, New York, 1986)Google Scholar
  25. 25.
    T. Stouraitis, Efficient convertors for residue and quadratic-residue number systems. IEE Proc. G, 139 (6), 626–634 (1992)Google Scholar
  26. 26.
    N.S. Szabo, R.L. Tanaka, Residue Arithmetic and its Applications to Computer Technology (McGraw-Hill, New York, 1967)zbMATHGoogle Scholar
  27. 27.
    Y. Tsuda, T. Shimamura, An improved NLMS algorithm for channel equalization, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2002), vol. 5 (2002), pp. 353–356Google Scholar
  28. 28.
    P.P. Vaidyanathan, Filter banks in digital communications. IEEE Circuits Syst. Mag. 1, 4–25 (2001)Google Scholar
  29. 29.
    I.M. Vinogradov, An Introduction to the Theory of Numbers (Pergamon Press, New York, 1955)Google Scholar
  30. 30.
    T.V. Vu, Efficient implementation of the Chinese remainder theorem for sign detection and residue decoding. IEEE Trans. Circuits Syst. I 45, 667–669 (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gian Carlo Cardarilli
    • 1
  • Alberto Nannarelli
    • 2
    Email author
  • Marco Re
    • 1
  1. 1.Department of Electronics EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.DTU ComputeTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations