Design and Evaluation of Booth-Encoded Multipliers in Redundant Binary Representation

  • Yajuan HeEmail author
  • Jiaxing Yang
  • Chip-Hong Chang


Redundant binary (RB) representation possesses some figures of merit as an internal format for the design of datapath components due to its carry-free property and avoidance of sign extension. Being a non-classical representation, its worth in meeting conflicting VLSI goals has not been fully evaluated. This chapter presents a structural and systematic approach to the design and analysis of different Booth multipliers in RB representation by decomposing them into several key building blocks. The design considerations on each of these generic constituent modules and their logic circuits are first discussed qualitatively and independently before they are selectively fused into different configurations of Booth multipliers. To unify the heterogeneous fabrics designed with different coding formats together, simple anterior and posterior converters are derived for their interfacing. Altogether 21 different RB multiplier architectures have been constructed with various configurations of partial product encoding, generation and reduction to analyze their design trade-offs in terms of area, delay, and energy consumption. These multipliers have been implemented and compared for various VLSI metrics with six commonly used operand lengths varying from 8 bits to 64 bits. The intriguing augmentation and restriction between different architectural modules inferred from this comparative study are inspirational to innovative RB multiplier design. It is shown that a large design space can be explored from sensible topological combinations of different constituent modules of RB multiplier architecture for the desirable performance characteristics.


Redundant binary arithmetic Digital multiplier Booth encoding Reverse converter Carry-free adder Hard multiples Partial product generation 


  1. 1.
    H.-C. Chow, I.-C. Wey, A 3.3V 1 GHz high speed pipelined booth multiplier, in Processing of the 2002 IEEE International Symposium Circuits and Systems (ISCAS), vol. 1, Arizona, USA, May 2002, pp. 457–460Google Scholar
  2. 2.
    H. Edamatsu, T. Taniguchi, T. Nishiyama, S. Kuninobu, A 33 MFLOPS floating point processor using redundant binary representation, in 1988 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, USA, Feb 1988, pp 152–153, 342–343Google Scholar
  3. 3.
    M. Tonomura, High-speed digital circuit of discrete cosine transform. IEICE Trans. Fundam. E78-A(8), 1342–1350 (1995)Google Scholar
  4. 4.
    Z. Yu, M.L. Yu, K. Azader, A.N. Willson Jr, A low power adaptive filter using dynamic reduced 2’s-complement representation, in Proceedings of the 2002 IEEE Custom Integrated Circuit Conference (CICC), Orlando, FL, USA, May 2002, pp. 141–144Google Scholar
  5. 5.
    N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. Yoshihara, Y. Horiba, A 600-MHz 54 × 54-bit multiplier with rectangular-styled Wallace tree. IEEE J. Solid-State Circuits 36(2), 249–257 (2001)CrossRefGoogle Scholar
  6. 6.
    S.-H. Lee, S.-J. Bae, H.-J. Park, A compact radix-64 54 × 54 CMOS redundant binary parallel multiplier. IEICE Trans. Electron. E85-C(6), 1342–1350 (2002)Google Scholar
  7. 7.
    J.-Y. Kang, J.-L. Gaudiot, A simple high-speed multiplier design. IEEE Trans. Comput. 55(10), 1253–1258 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Vazquez, E. Antelo, J.D. Bruguera, Fast radix-10 multiplication using redundant BCD codes. IEEE Trans. Comput. 63, 1902–1914 (2014)CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Gu, C.H. Chang, K.S. Yeo, Algorithm and architecture of a high density, low power scalar product macrocell. IEEE Proc. Comput. Digit Technol. 151(2), 161–172 (2004)CrossRefGoogle Scholar
  10. 10.
    S.F. Hsiao, M.R. Jiang, J.S. Yeh, Design of high-speed low-power 3–2 counter and 4–2 compressor for fast multipliers. Electron. Lett. 34(4), 341–343 (1998)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, G. Jullien, W.C. Miller, A new design technique for column compression multipliers. IEEE Trans. Comput. 44(8), 962–970 (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, K. Mashiko, An 8.8-ns 54 × 54-bit multiplier with high speed redundant binary architecture. IEEE J. Solid-State Circuits 31(6), 773–783 (1996)CrossRefGoogle Scholar
  13. 13.
    Y. Kim, B.-S. Song, J. Grosspietsch, S.F. Gillig, A carry-free 54b × 54b multiplier using equivalent bit conversion algorithm. IEEE J. Solid-State Circuits 36(10), 1538–1545 (2001)CrossRefGoogle Scholar
  14. 14.
    Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, N. Takagi, A high-speed multiplier using a redundant binary adder tree. IEEE J. Solid-State Circuits 22(1), 28–34 (1987)CrossRefGoogle Scholar
  15. 15.
    R. Kattamuri, S.K. Sahoo, Computation sharing multiplier using redundant binary arithmetic, in Proceedings of the 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Kuala Lumpur, Malaysia, Dec 2010, pp. 108–111Google Scholar
  16. 16.
    T.-B. Juang, C.-C. Wei, C.H. Chang, Area-saving technique for low-error redundant binary fixed-width multiplier implementation, in Proceedings of the 2009 IEEE International Symposium on Integrated Circuits, Singapore, Dec 2009, pp. 550–553Google Scholar
  17. 17.
    S.K. Reddy, S.K. Sahoo, S. Chakraborty, A high speed, high Radix 32-bit Redundant parallel multiplier, in Proceedings 2011 IEEE International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, Mar 2011, pp. 917–921Google Scholar
  18. 18.
    S.K. Sahoo, A. Ashati, R. Sahoo, C. Shekhar, A high-speed radix-64 parallel multiplier using a novel hardware implementation approach for partial product generation based on redundant binary arithmetic, in Proceedings of the 2008 IEEE International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, July 2008, pp. 474–479Google Scholar
  19. 19.
    E.K.L. Surendran, P.R. Antony, Implementation of fast multiplier using modified radix-4 Booth algorithm with redundant binary adder for low energy applications, in Proceedings of the 2014 IEEE International Conference on Computational Systems and Communications, Trivandrum, Kerala, India, Dec 2014, pp. 266–271Google Scholar
  20. 20.
    S. Dutt, A. Chauhan, R. Bhadoriya, S. Nandi, G. Trivedi, A high-performance energy-efficient hybrid redundant MAC for error-resilient applications, in Proceedings of the 2015 International Conference VLSI Design, Bangalore, India, Jan 2015, pp. 351–356Google Scholar
  21. 21.
    A.M. Shams, T.K. Darwish, M.A. Bayoumi, Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans. VLSI Syst. 10(1), 20–29 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Avizienis, Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electron. Comput. EC-10, 389–400 (1961)CrossRefMathSciNetGoogle Scholar
  23. 23.
    N. Takagi, A high-speed multiplier with a regular cellular array structure using redundant binary representation, Technical Report R82-14, Yajima Lab, Department of Information Science, Kyoto University, Kyoto, Japan, Jun 1982Google Scholar
  24. 24.
    G.W. Bewick, Fast multiplication: algorithms and implementation, Ph.D. dissertation, Stanford University, Feb 1994Google Scholar
  25. 25.
    N. Besli, R.G. Deshmukh, A novel redundant binary signed-digit (RBSD) Booth’s encoding, in Proceedings of the 2002 IEEE Southeast Conference, Columbia, South Carolina, USA, Apr 2002, pp. 426–431Google Scholar
  26. 26.
    G.M. Blair, The equivalence of twos-complement addition and the con-version of redundant-binary to twos-complement numbers. IEEE Trans. Circuits Syst. I Regul. Pap. 45, 669–671 (1998)CrossRefGoogle Scholar
  27. 27.
    N. Takagi, H. Yasuura, S. Yajima, High-speed VLSI multiplication algorithm with a redundant binary addition tree. IEEE Trans. Comput. C-34(9), 789–796 (1985)CrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, N. Takagi, High speed multiplier LSI using a redundant binary adder tree, in Proceedings of the 1984 IEEE International Conference Computer Design (ICCD’1984), New York, USA, Oct 1984Google Scholar
  29. 29.
    S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, N. Takagi, Design of high-speed MOS multiplier and divider using redundant binary representation, in Proceedings of the 8th IEEE Symposium Computer Arithmetic, Como, Italy, May 1987, pp. 80–86Google Scholar
  30. 30.
    S. Kuninobu, T. Nishiyama, T. Taniguchi, High speed MOS multiplier and divider using redundant binary representation and their implementation in a microprocessor. IEICE Trans. Electron. E76-C(3), 436–445 (1993)Google Scholar
  31. 31.
    H. Makino, Y. Nakase, H. Shinohara, An 8.8-ns 54 × 54-bit multiplier using new redundant binary architecture, in Proceedings of the 1993 IEEE International Conference Design (ICCD’1993), Cambridge, Massachusetts, USA, Oct 1993, pp. 202–205Google Scholar
  32. 32.
    H. Makino, H. Suzuki, H. Morinaka, Y. Nakase, K. Mashiko, T. Sumi, A 286 MHz 64-b floating point multiplier with enhanced CG operation. IEEE J. Solid-State Circuits 31(4), 504–513 (1996)CrossRefGoogle Scholar
  33. 33.
    M.D. Ercegovac, T. Lang, Y. Kim, B.S. Song, J. Grosspietsch, S.F. Gillig, Comments on to ‘A carry-free 54b×54b multiplier using equivalent bit conversion algorithm’. IEEE J. Solid-State Circuits 38(1), 160–161 (2003)CrossRefGoogle Scholar
  34. 34.
    W. Rulling, A remark on carry-free binary multiplication. IEEE J. Solid-State Circuits 38(1), 159–160 (2003)CrossRefGoogle Scholar
  35. 35.
    I. Choo R.G. Deshmukh, A novel conversion scheme from a redundant binary number to two’s complement binary number for parallel architectures, in Proceedings of the 2001 IEEE Southeast Conference, Clemson, South Carolina, USA, Apr 2001, pp. 196–201Google Scholar
  36. 36.
    Y. He, C.H. Chang, A power-delay efficient hybrid carry-lookahead/carry-select based redundant binary to two’s complement converter. IEEE Trans. Circuits Syst. I Regul. Pap. 55(1), 336–346 (2008)CrossRefMathSciNetGoogle Scholar
  37. 37.
    O.T.-C. Chen, L.-H. Chen, N.-W. Lin, C.-C. Chen, Application-specific data path for highly efficient computation of multistandard video codecs. IEEE Trans. Circuits Syst. Video Technol. 17(1), 26–42 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Perri, P. Corsonello, G. Cocorullo, A 64-bit reconfigurable adder for low power media processing. Electron. Lett. 38(9), 397–399 (2002)CrossRefGoogle Scholar
  39. 39.
    N. Slingerland, A.J. Smith, Measuring the performance of multimedia instruction sets. IEEE Trans. Comput. 51(11), 1317–1332 (2002)CrossRefMathSciNetGoogle Scholar
  40. 40.
    R. Fried, Minimizing energy dissipation in high-speed multipliers, in Proceedings of the 1997 IEEE International Symposium Low Power Electronics and Design, Monterey, California, USA, Aug 1997, pp. 214–219Google Scholar
  41. 41.
    W.-C. Yeh, C.-W. Jen, High-speed Booth encoded parallel multiplier design. IEEE Trans. Comput. 49(7), 692–701 (2000)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Y. He, C.H. Chang, A new redundant binary Booth encoding for fast 2n-bit multiplier design. IEEE Trans. Circuits Syst. I Regul. Pap. 56(6), 1192–1201 (2009)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Y. He, Design and analysis of redundant binary Booth multipliers, Ph.D. dissertation, the Nanyang Technological University, Jun 2007Google Scholar
  44. 44.
    TSMC 0.18μm Process 1.8-Volt SAGE-X™ Standard Cell Library Databook, Artisan Components, Inc., Oct 2001Google Scholar
  45. 45.
    Design Compiler User Guide, Synopsys, Inc., Sept 2003Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Microelectronics and Solid ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations