Advertisement

Logarithmic Number System and Its Application in FIR Filter Design

  • Vassilis PaliourasEmail author
Chapter
  • 798 Downloads

Abstract

This chapter discusses the Logarithmic Number System (LNS) and some aspects of its impact on signal processing hardware. The use of LNS leads to efficient precision versus dynamic range trade-offs, reduced complexity of certain arithmetic operations, and superior roundoff error behavior compared to linear arithmetic. In order to fully exploit the LNS potential, certain design parameters have to be optimally defined, so that the complexity of awkward operations, such as addition and subtraction, remains moderate. Furthermore retiming can efficiently optimize certain LNS circuits characterized by imbalanced paths. Benefits due to LNS are reviewed for FIR filter implementations and other DSP algorithms.

Keywords

Logarithmic Number System Digital filters Fast Fourier Transform Low-power design Computer arithmetic 

References

  1. 1.
    T. Stouraitis, V. Paliouras, Considering the alternatives in low-power design. IEEE Circuits Devices 17 (4), 23–29 (2001)CrossRefGoogle Scholar
  2. 2.
    P.E. Landman, J.M. Rabaey, Architectural power analysis: the dual bit type method. IEEE Trans. VLSI Syst. 3 (2), 173–187 (1995)CrossRefGoogle Scholar
  3. 3.
    K.-H. Chen, T.-D. Chiueh, A low-power digit-based reconfigurable FIR filter. IEEE Trans. Circuits Syst. II: Express Briefs 53 (8), 617–621 (2006)CrossRefGoogle Scholar
  4. 4.
    E. Swartzlander, A. Alexopoulos, The sign/logarithm number system. IEEE Trans. Comput. 24 (12), 1238–1242 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M.G. Arnold, T.A. Bailey, J.R. Cowles, M.D. Winkel, Applying features of the IEEE 754 to sign/logarithm arithmetic. IEEE Trans. Comput. 41, 1040–1050 (1992)CrossRefGoogle Scholar
  6. 6.
    J. Coleman, C. Softley, J. Kadlec, R. Matousek, M. Tichy, Z. Pohl, A. Hermanek, N. Benschop, The European logarithmic microprocessor. IEEE Trans. Comput. 57 (4), 532–546 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. Mahalingam, N. Ranganathan, Improving accuracy in Mitchell’s logarithmic multiplication using operand decomposition. IEEE Trans. Comput. 55 (12), 1523–1535 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Johansson, O. Gustafsson, L. Wanhammar, Implementation of elementary functions for logarithmic number systems. IET Comput. Digit. Tech. 2 (4), 295–304 (2008) [Online]. Available: http://link.aip.org/link/?CDT/2/295/1
  9. 9.
    M.G. Arnold, T.A. Bailey, J.R. Cowles, M.D. Winkel, Arithmetic co-transformations in the real and complex Logarithmic Number Systems. IEEE Trans. Comput. 47 (7), 777–786 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    V.S. Dimitrov, G.A. Jullien, W.C. Miller, Theory and applications of the double-base number system. IEEE Trans. Comput. 48 (10), 1098–1106 (1999)CrossRefGoogle Scholar
  11. 11.
    R. Muscedere, V. Dimitrov, G. Jullien, W. Miller, Efficient techniques for binary-to-multidigit multidimensional logarithmic number system conversion using range-addressable look-up tables. IEEE Trans. Comput. 54 (3), 257–271 (2005)CrossRefGoogle Scholar
  12. 12.
    R.C. Ismail, J.N. Coleman, ROM-less LNS, in IEEE Symposium on Computer Arithmetic (2011), pp. 43–51Google Scholar
  13. 13.
    H. Fu, O. Mencer, W. Luk, FPGA designs with optimized logarithmic arithmetic. IEEE Trans. Comput. 59 (7), 1000–1006 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Arnold, S. Collange, A Real/Complex logarithmic number system ALU. IEEE Trans. Comput. 60 (2), 202–213 (2011)CrossRefMathSciNetGoogle Scholar
  15. 15.
    R.E. Morley Jr., G.L. Engel, T.J. Sullivan, S.M. Natarajan, VLSI based design of a battery-operated digital hearing aid, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (1988), pp. 2512–2515Google Scholar
  16. 16.
    J.R. Sacha, M.J. Irwin, Number representation for reducing switched capacitance in subband coding, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (1998), pp. 3125–3128Google Scholar
  17. 17.
    M.G. Arnold, Reduced power consumption for MPEG decoding with LNS, in Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP 02) (2002), pp. 65–67Google Scholar
  18. 18.
    B. Kang, N. Vijaykrishnan, M.J. Irwin, T. Theocharides, Power-efficient implementation of turbo decoder in SDR system, in Proceedings of the IEEE International SOC Conference (2004), pp. 119–122Google Scholar
  19. 19.
    P. Robertson, E. Villebrun, P. Hoeher, A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain, in Proceedings IEEE International Conference on Communications, June 1995, pp. 1009–1013Google Scholar
  20. 20.
    H. Wang, H. Yang, D. Yang, Improved log-MAP decoding algorithm for turbo-like codes. Commun. Lett. IEEE 10 (3), 186–188 (2006)CrossRefGoogle Scholar
  21. 21.
    R. Peng, R.-R. Chen, Application of nonbinary LDPC codes for communication over fading channels using higher order modulations, in IEEE Global Telecommunications Conference, GLOBECOM ’06, December 2006, pp. 1–5Google Scholar
  22. 22.
    V. Paliouras, T. Stouraitis, Low-power properties of the Logarithmic Number System, in Proceedings of 15th Symposium on Computer Arithmetic (ARITH15), June 2001, pp. 229–236Google Scholar
  23. 23.
    V. Paliouras, T. Stouraitis, Logarithmic number system for low-power arithmetic, in Proceedings of International Workshop - Power and Timing Modeling, Optimization and Simulation (PATMOS 2000). Lecture Notes in Computer Science, vol. 1918 (2000), pp. 285–294Google Scholar
  24. 24.
    C. Basetas, I. Kouretas, V. Paliouras, Low-power digital filtering based on the logarithmic number system, in Proceedings of 17th Workshop on Power and Timing Modeling, Optimization and Simulation, Lecture Notes in Computer Science, vol. 4644 (2007), pp. 546–555CrossRefGoogle Scholar
  25. 25.
    I. Kouretas, C. Basetas, V. Paliouras, Low-power Logarithmic Number System addition/subtraction and their impact on digital filters, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’08), pp. 692–695 (2008)Google Scholar
  26. 26.
    I. Kouretas, C. Basetas, V. Paliouras, Low-power logarithmic number system addition/subtraction and their impact on digital filters. IEEE Trans. Comput. 62 (11), 2196–2209 (2013)CrossRefMathSciNetGoogle Scholar
  27. 27.
    H. Henkel, Improved addition for the logarithmic number system. IEEE Trans. Acoust. Speech Signal Process. 37 (2), 301–303 (1989)CrossRefGoogle Scholar
  28. 28.
    D. Lewis, L. Yu, Algorithm design for a 30 bit integrated logarithmic processor, in Proceedings of the 9th Symposium on Computer Arithmetic, pp. 192–199 (1989)Google Scholar
  29. 29.
    J. Coleman, Simplification of table structure in logarithmic arithmetic. Electron. Lett. 31 (22), 1905–1906 (1995)CrossRefGoogle Scholar
  30. 30.
    V. Paliouras, T. Stouraitis, A novel algorithm for accurate logarithmic number system subtraction, in Proceedings of the 1996 IEEE Symposium on Circuits and Systems (ISCAS’96), vol. 4, May 1996, pp. 268–271Google Scholar
  31. 31.
    I. Orginos, V. Paliouras, T. Stouraitis, A novel algorithm for multi-operand Logarithmic Number System addition and subtraction using polynomial approximation, in Proceedings of the 1995 IEEE International Symposium on Circuits and Systems (ISCAS’95) (1995), pp. III.1992–III.1995Google Scholar
  32. 32.
    S. Collange, J. Detrey, F. de Dinechin, Floating-point or LNS: choosing the right arithmetic on an application basis, in Proceedings of the 9th Euromicro Conference on Digital System Design (DSD’06) (2006), pp. 197–203Google Scholar
  33. 33.
    P.D. Vouzis, S. Collange, M.G. Arnold, Cotransformation provides area and accuracy improvement in an HDL library for LNS subtraction, in Proceedings of the 10th Euromicro Conference on Digital System Design (DSD’07) (2007), pp. 85–93Google Scholar
  34. 34.
    J.-M. Muller, Elementary Functions – Algorithms and Implementation (Birkhäuser, Boston 1997)CrossRefzbMATHGoogle Scholar
  35. 35.
    S. Paul, N. Jayakumar, S. Khatri, A fast hardware approach for approximate, efficient logarithm and antilogarithm computations. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17 (2), 269–277 (2009)Google Scholar
  36. 36.
    J. Kurokawa, T. Payne, S. Lee, Error analysis of recursive digital filters implemented with logarithmic number systems. IEEE Trans. Acoust. Speech Signal Process. 28 (6), 706–715 (1980)CrossRefGoogle Scholar
  37. 37.
    I. Koren, Computer Arithmetic Algorithms (Prentice-Hall, Englewood Cliffs, NJ, 1993)zbMATHGoogle Scholar
  38. 38.
    V. Paliouras, Optimization of LNS operations for embedded signal processing applications, in IEEE International Symposium on Circuits and Systems (ISCAS), 2002), vol. 2 (2002), pp. II-744–II-747Google Scholar
  39. 39.
    D. Chandra, Error analysis of FIR filters implemented using logarithmic arithmetic. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 45 (6), 744–747 (1998)CrossRefGoogle Scholar
  40. 40.
    S.W. Kwa, G.L. Engel, R.E. Morley, Quantization noise analysis of sign/logarithm data encoders when excited by speech or sinusoidal inputs. IEEE Trans. Signal Process. 48 (12), 3578–3581 (2000)CrossRefMathSciNetGoogle Scholar
  41. 41.
    D.M. Lewis, Interleaved memory function interpolators with application to an accurate LNS arithmetic unit. IEEE Trans. Comput. 43 (8), 974–982 (1994)CrossRefzbMATHGoogle Scholar
  42. 42.
    T. Stouraitis, Logarithmic Number System: theory, analysis and design. Ph.D. dissertation, University of Florida (1986)Google Scholar
  43. 43.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991)zbMATHGoogle Scholar
  44. 44.
    F. Taylor, R. Gill, J. Joseph, J. Radke, A 20 bit Logarithmic Number System processor. IEEE Trans. Comput. 37 (5), 190–199 (1988)CrossRefGoogle Scholar
  45. 45.
    M. Keating, D. Flynn, R. Aitken, A. Gibbons, K. Shi, Low Power Methodology Manual: For System-on-Chip Design (Springer Publishing Company, Incorporated, New York, 2007)Google Scholar
  46. 46.
    C.-H. Chang, J. Chen, A. Vinod, Information theoretic approach to complexity reduction of FIR filter design. IEEE Trans. Circuits Syst. – Part I 55 (8), 2310–2321 (2008)CrossRefMathSciNetGoogle Scholar
  47. 47.
    M. Aktan, A. Yurdakul, G. Dundar, An algorithm for the design of low-power hardware-efficient FIR filters. IEEE Trans. Circuits Syst. – Part I 55 (6), 1536–1545 (2008)CrossRefMathSciNetGoogle Scholar
  48. 48.
    T.K. Callaway, E.E. Swartzlander Jr., Power-delay characteristics of CMOS multipliers, in Proceedings of the 13th Symposium on Computer Arithmetic (ARITH13), July 1997, pp. 26–32Google Scholar
  49. 49.
    A. Brokalakis, V. Paliouras, Using the arithmetic representation properties of data to reduce the area and power consumption of FFT circuits for wireless OFDM systems, in 2011 IEEE Workshop on Signal Processing Systems (SiPS), October 2011, pp. 7–12Google Scholar
  50. 50.
    K. Maharatna, E. Grass, U. Jagdhold, A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM. IEEE J. Solid-State Circuits 39 (3), 484–493 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of PatrasPatrasGreece

Personalised recommendations