Skip to main content

Role of Rhizospheric Microbes in Heavy Metal Uptake by Plants

  • Chapter
  • First Online:

Abstract

Due to industrialization, excessive use of pesticides and fertilizer and improper waste management practices cause heavy metal accumulation in both soil and water. Due to the nondegradable and persistent nature, heavy metals can be accumulated in soils for hundreds of years. They enter the bodies of plants and animals and thereby cause negative health impacts to the environment. Even though the soil heavy metal remediation is a must, it is not an easy task to achieve. Among many physical and chemical methods, phytoremediation plays an important role, due to its efficient and convenient nature. Rhizophere microbes play an important role in phytoremediation. Since, rhizosphere is the immediate vicinity of the root, the chemical and physical changes in that environment can easily effect heavy metal uptake by the plant. By siderophore production, acidification, releasing plant growth promoters, reducing the plant stress conditions and through redox changes rhizosphere enhances the phytoreomediation processes. However, plants can bioconcentrate (phytoextraction) and also bioimmobilize the toxic heavy metals through rhizospheric processes. This chapter summaries the role of rhizospheric organisms for facilitation of heavy metal uptake, the different mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera that involve in these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  Google Scholar 

  • Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74:1321–1326

    Article  CAS  Google Scholar 

  • Bitton G, Freihofer V (1977) Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb Ecol 4:119–125

    Article  CAS  Google Scholar 

  • Blais J, Tyagi R, Auclair J, Huang C (1992) Comparison of acid and microbial leaching for metal removal from municipal sludge. Water Sci Technol 26:197–206

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279

    Article  CAS  Google Scholar 

  • Braud A, Hannauer M, Mislin GL, Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009b) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638

    Article  CAS  Google Scholar 

  • Chompoothawat N, Wongthanate J, Ussawarujikulchai A, Prapagdee B (2010) Removal of cadmium ion from aqueous solution by exopolysaccharide-producing bacterium, Ralstonia sp. Fresenius Environ Bull 19:2919–2923

    CAS  Google Scholar 

  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151:185–193

    Article  CAS  Google Scholar 

  • Cooper DG, Zajic JE, Gracey D (1979) Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene. J Bacteriol 137:795–801

    CAS  Google Scholar 

  • Cooper D, Zajic J, Denis C (1981a) Surface active properties of a biosurfactant from Corynebacterium lepus. J Am Oil Chem Soc 58:77–80

    Article  CAS  Google Scholar 

  • Cooper D, Macdonald C, Duff S, Kosaric N (1981b) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  Google Scholar 

  • Cruz KA (2014) Extracellular polysaccharides production by bacteria as a mechanism of mercury tolerance. Rutgers University-Graduate School, New Brunswick

    Google Scholar 

  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud 16:799

    CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  Google Scholar 

  • de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas Fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009b) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  Google Scholar 

  • Fang L, Wei X, Cai P, Huang Q, Chen H, Liang W, Rong X (2011) Role of extracellular polymeric substances in Cu (II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour Technol 102:1137–1141

    Article  CAS  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Proc Environ Protect 3:58–66

    Google Scholar 

  • Glazebrook J, Reed JW, Reuber TL, Walker GC (1990) Genetic analyses of Rhizobium meliloti exopolysaccharides. Int J Biol Macromol 12:67–70

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Gomez C, Bosecker K (1999) Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicrobiol J 16:233–244

    Article  CAS  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Gupta R, Schuster M (2012) Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa. BMC Microbiol 12:30

    Article  CAS  Google Scholar 

  • Gutnick D, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl Microbiol Biotechnol 54:451–460

    Article  CAS  Google Scholar 

  • Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant Soil 289:355–368

    Article  CAS  Google Scholar 

  • Hao X, Mohamad OA, Xie P, Rensing C, Wei G (2014) Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae. Sep Sci Technol 49:376–387

    Article  CAS  Google Scholar 

  • Hattori H (1996) Decomposition of organic matter with previous cadmium adsorption in soils. Soil Sci Plant Nutr 42:745–752

    Article  CAS  Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  • Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516

    Article  CAS  Google Scholar 

  • Inoue S, Ito S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol Lett 4:3–8

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  CAS  Google Scholar 

  • Jang A, Kim S, Kim S, Lee S, Kim IS (2001) Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol 43:41–48

    CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  Google Scholar 

  • Khan A, Kuek C, Chaudhry T, Khoo C, Hayes W (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Khorrami Vafa M, Shokri K, Sayyadian K, Rejali F (2012) Contribution of microbial associations to the cadmium uptake by peppermint (Mentha piperita). Ann Biol Res 3:2325–2329

    Google Scholar 

  • Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61:2172–2179

    CAS  Google Scholar 

  • Kunito T, Saeki K, Nagaoka K, Oyaizu H, Matsumoto S (2001) Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur J Soil Biol 37:95–102

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. Biology of Rhodococcus. Springer, Berlin, pp. 291–313

    Book  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  • Lau T, Wu X, Chua H, Qian P, Wong P (2005) Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci Technol 52:63–68

    CAS  Google Scholar 

  • Leigh JA, Walker GC (1994) Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10:63–67

    Article  CAS  Google Scholar 

  • Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80:806–811

    Article  CAS  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  CAS  Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres A (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Masák J, Čejková A, Schreiberová O, Řezanka T (2014) Pseudomonas biofilms: possibilities of their control. FEMS Microbiol Ecol 89:1–14

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (1999) On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ Prog 18:50–54

    Article  CAS  Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Pal A, Paul A (2013) Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by serpentine rhizobacterium Cupriavidus pauculus KPS 201. J Polym 2013:692374

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  Google Scholar 

  • Pérez JAM, García-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704

    Article  CAS  Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers P, Foster L (2003) Anions effects on biosorption of Mn (II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270

    Article  CAS  Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol 126:233–237

    Article  CAS  Google Scholar 

  • Rahman PK, Gakpe E (2008) Production, characterisation and applications of biosurfactants—review. Biotechnology 7(2):360–370

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Raskin I, Kumar PN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raymond K, Dertz E (2004) Biochemical and physical properties of siderophores. Iron transport in bacteria. ASM Press, Washington, DC, pp. 3–17

    Book  Google Scholar 

  • Renella G, Landi L, Nannipieri P (2004) Degradation of low molecular weight organic acids complexed twith heavy metals in soil. Geoderma 122:311–315

    Article  CAS  Google Scholar 

  • Reuber T, Reed J, Glazebrook J, Glucksmann M, Ahmann D, Marra A, Walker G (1991) Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance. Biochem Soc Trans 19:636–641

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Rozycki H, Strzelczyk E (1986) Organic acids production by Streptomyces spp. isolated from soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). Plant and Soil 96:337–345

    Article  CAS  Google Scholar 

  • Rubinovitz C, Gutnick D, Rosenberg E (1982) Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol 152:126–132

    CAS  Google Scholar 

  • Rufino R, Sarubbo L, Campos-Takaki G (2007) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati S (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  Google Scholar 

  • Seidel H, Ondruschka J, Morgenstem P, Stottmeister U (1998) Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: a feasibility study. Water Sci Technol 37:387–394

    Article  CAS  Google Scholar 

  • Seneviratne M, Seneviratne G, Madawala H, Iqbal M, Rajakaruna N, Bandara T, Vithanage M (2015) A preliminary study of the role of bacterial–fungal co-inoculation on heavy metal phytotoxicity in serpentine soil. Aust J Bot 63:261–268

    Article  CAS  Google Scholar 

  • Shao Z (2011) Trehalolipids, biosurfactants. Springer, New York, pp. 121–143

    Book  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    Article  CAS  Google Scholar 

  • Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409–1417

    Article  CAS  Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Int J Microbiol Res 4:227–233

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harbor Perspect Biol 3:a001438

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087

    Article  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  Google Scholar 

  • Ueshima M, Ginn BR, Haack EA, Szymanowski JE, Fein JB (2008) Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta 72:5885–5895

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth–promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  CAS  Google Scholar 

  • Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ SciTechnol 35:3144–3150

    Article  CAS  Google Scholar 

  • Wilson AR, Lion LW, Nelson YM, Shuler ML, Ghiorse WC (2001) The effects of pH and surface composition on Pb adsorption to natural freshwater biofilms. Environ Sci Technol 35:3182–3189

    Article  CAS  Google Scholar 

  • Yakimov MM, Fredrickson HL, Timmis KN (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 23:13–18

    CAS  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    Article  Google Scholar 

  • Zhang D, Wang J, Pan X (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 138:589–593

    Article  CAS  Google Scholar 

  • Zhu L, Dai X, Yu YW, Qi HY, Xu XY (2012) Role and significance of extracellular polymeric substances on the property of aerobic granule. Bioresour Technol 107:46–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Seneviratne, M., Seneviratne, G., Madawala, H., Vithanage, M. (2017). Role of Rhizospheric Microbes in Heavy Metal Uptake by Plants. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_8

Download citation

Publish with us

Policies and ethics