Skip to main content

Prospects of Bacterial-Assisted Remediation of Metal-Contaminated Soils

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Industrial revolution resulted in plenty of contaminants in the environment. Several organic and inorganic pollutants have adversely affected soils and water resources, causing serious health issues in humans. Among inorganic contaminants heavy metals are of prime importance as they are nondegradable in the environment. Arsenic, cadmium, chromium, cobalt, copper, lead, mercury, selenium, zinc, and other metals originating from various point and nonpoint sources are contaminating natural resources. Elevated concentrations of poisonous metals are not only disturbing soil health and microbial ecology but also decreasing crop production and global food security. Entry of metal pollutants into the food chain is dangerous for human health. Serious efforts are needed to mitigate rising threats of metal contamination. Physical, chemical, and biological approaches can be used to remediate such type of pollutants. However, bioremediation is considered as a promising technique, being cost effective and environment friendly with minimum adverse effects, esthetic advantages, and long-term applicability. Phytoremediation is a type of bioremediation to remove toxic metals from soil through hyperaccumulation or phytostabilization in plant cells. Generally, higher contents of toxic metals in soil and water result in more uptake by roots and more translocation toward shoots, causing interference in metabolism and reduced growth. Successful phytoremediation is limited to the plant types, tolerance to the high metal concentrations, accumulation rate, growth rate, adaptability, and biomass production. Metal-tolerant bacteria can help plant to tolerate metal stress via different mechanisms involved including production of different hormones such as auxins, cytokinin, and gibberellic acid or suppressing stress-induced enzymes such as plant ethylene level. This chapter reviews possible interactions between plant and bacteria to make situations more conducive for remediation of metal-contaminated soil. The chapter also covers different strategies/mechanisms adopted by plants and bacteria to mitigate toxic effect of metals on plant growth in metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab R, Berkum PV, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN (2011) Inducing salt tolerance in mugbean through co-inoculation with Rhizobium and PGPR containing ACC-deaminase. Can J Microbiol 57:578–589

    Article  CAS  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  Google Scholar 

  • Asghar HN, Setia R, Marschner P (2012) Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biol Biochem 47:175–178

    Article  CAS  Google Scholar 

  • Banerjee S, Rakhi P, Chandan S, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4(6):378–383

    CAS  Google Scholar 

  • Belimov A, Safronova V, Sergeyeva T, Egorova T, Matveyeva V, Tsyganov V, Borisov A, Tikhonovich I, Kluge C, Preisfeld A, Dietz K, Stepanok V (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 49(2):151–156

    Google Scholar 

  • Binggan W, Yang L (2010) A review of heavy metal contaminations in urban soils, urban raod dusts and agricultural soils from China. Microchem J 94:99–107

    Article  Google Scholar 

  • Bruins MR, Sanjay K, Frederik O (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation-the prospect for practical applications. Environ Int 36:299–307

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  Google Scholar 

  • Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. J Biol Res 43(1):91–98

    Google Scholar 

  • Fassler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 159:609–643

    Article  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Mineral Process Env Protect 3:229–236

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5-6):227–242

    Article  CAS  Google Scholar 

  • Gopal R, Khurana N (2011) Effect of heavy metal pollutants on sunflower. Afr J Plant Sci 5:531–536

    CAS  Google Scholar 

  • Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72(5):1343–1348

    Article  CAS  Google Scholar 

  • Hu Q, Hong-yan Q, Jing-hai Z, Hong-xun Z (2006) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci 19(1):74–79

    Article  Google Scholar 

  • Hynninen A, Thierry T, Leena P, Dominique M, Marko V (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74(2):384–394

    Article  CAS  Google Scholar 

  • Ianeva OD (2009) Mechanisms of bacteria resistance to heavy metals. Microbiology 71(6):54–65

    CAS  Google Scholar 

  • Janssen PJ, Rob VH, Hugo M, Pieter M, Nicolas M, Mohammed B, Natalie L, Tatiana V, Alla L, Arlette M, Se'bastien M, Claudine T, Safiyh Sean M, John D (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5(5):10433

    Article  Google Scholar 

  • Jing YZ, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8:192–207

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica junica L. Int J Plant Prod 3:1735–8043

    Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Khan MS, Almas Z, Ahmad WP, Mohammad O (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir ZA (2013) Effect of microbial inoculation on wheat growth and phyto-stabilization of chromium contaminated soil. Pak J Bot 45(SI):27–34

    Google Scholar 

  • Khan AR, Ullah I, Khan AL, Park G, Waqas MS, Hong BK, Jung Y, Kwak Y, Lee I, Shin J (2015) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp RSC-14 inoculation. Environ Sci Pollut Res 22:14032–14042

    Article  CAS  Google Scholar 

  • Koo S, Cho K (2009) Isolation and characterization of a plant growth-promoting Rhizobacterium, Serratia sp SY5. J Microbiol Biotechnol 19(11):1431–1438

    CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72(4):678–683

    Article  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  CAS  Google Scholar 

  • Levinson HS, Mahler I, Blackwelder P, Hood T (1996) Lead resistance and sensitivity in Staphylococcus aureus. FEMS Microbiol Lett 145:421–425

    Article  CAS  Google Scholar 

  • Li Y, Wang Q, Wang L, He L, Sheng X (2016) Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2015.10.012

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Maier RM, Ian LP, Charles PG (2009) Environmental microbiology. Elsevier Inc, Amsterdam

    Google Scholar 

  • Mangkoedihardjo S (2007) Phytotechnology integrity in environmental sanitation for sustainable development. J Appl Sci Res 3(10):1037–1044

    Google Scholar 

  • Manousaki E, Nicolas N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    Article  CAS  Google Scholar 

  • Mire CE, Jeanette AT, William FO, Kandalam VR, Gregory BH (2004) Lead precipitation by Vibrio harveyi: evidence for novel Quorum-sensing interactions. Appl Environ Microbiol 70(2):855–864

    Article  CAS  Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of mycorrhizal fungi and phosphorous fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137

    Article  CAS  Google Scholar 

  • Mulligan CN, Kamali M, Gibbs BF (2004) Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater 110:77–84

    Article  CAS  Google Scholar 

  • Oancea S, Foca N, Airinei A (2005) Effects of heavy metals on plant growth and photosynthetic activity. Boil Trace Element Res 92:257–273

    Google Scholar 

  • Paz-Alberto A, Sigua G (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2:71–86

    Article  Google Scholar 

  • Peralta JR, De la Rosa G, Gonzalez JH, Torresdey JLG (2004) Effects of growth stages on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Res 40:3628–3636

    Article  CAS  Google Scholar 

  • Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51(12):1061–1069

    Article  CAS  Google Scholar 

  • Rifaat HM, Fathy MK, Wagdy KBK (2009) Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. J Appl Sci Environ Sanit 4(3):197–206

    Google Scholar 

  • Rouphael Y, Cardarelli M, Reab E, Colla G (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ Exp Bot 63:49–58

    Article  CAS  Google Scholar 

  • Sanayei Y, Ismail N, Talebi SM (2009) Determination of heavy metals in Zayandeh Rood River, Isfahan-Iran. World Appl Sci J 6:1209–1214

    CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Shi Z, Tao S, Pan B, Fan W, He XC, Zuo Q, Wu SP, Li BG, Cao J, Liu WX, Xu FL, Wang XJ, Shen WRV, Wong PK (2005) Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ Pollut 134:97–111

    Article  CAS  Google Scholar 

  • Shilev S, Fernández A, Benlloch M, Sancho ED (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Phytoremediation of metal-contaminated soils. Springer, Dordrecht, pp 315–318

    Google Scholar 

  • Shukla KP, Singh N, Shivesh S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J GEBJ-3:1–20

    Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Taghavi S, Celine L, Sebastien M, Ruddy W, Max M, Daniel VL (2009) Lead (II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96(2):171–182

    Article  CAS  Google Scholar 

  • Talanavoa V, Titou AF, Boeva NP (2000) Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant 43(3):441–444

    Article  Google Scholar 

  • Tumuklu A, Yalcin MG, Sonmez M (2007) Detection of heavy metal concentrations in soil caused by Nigde City garbage dump. Polish J Environ Stud 16(4):651–658

    CAS  Google Scholar 

  • Tuna AL, Brum B, Yokas I, Coban E (2002) The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turk J Biol 26:109–113

    CAS  Google Scholar 

  • Weiqiang L, Khan MA, Shinjiro Y, Yujji K (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis Thaliana. Plant Growth Regul 46:45–50

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  Google Scholar 

  • Wuana, RA; Okieimen, FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi:http://dx.doi.org/10.5402/2011/402647

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Naeem Asghar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saleem, M. et al. (2017). Prospects of Bacterial-Assisted Remediation of Metal-Contaminated Soils. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_3

Download citation

Publish with us

Policies and ethics