Skip to main content

Methanotrophs: Methane Mitigation, Denitrification and Bioremediation

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Methanotrophs are bacteria capable of using methane as a carbon source. They can lower atmospheric methane emissions, remove N in environmental and wastewater treatment systems and even transform organic pollutants in soils. Methanotrophic methane mitigation technologies have been demonstrated beyond the laboratories as adaptable field-scale systems that may be engineered to meet site-specific climatic variations and ensure minimal atmospheric methane emission. In agricultural sediments and soils, methanotrophs sequester methane but are affected by fertiliser applications, while in wastewater treatment systems they can lower the costs associated with N removal. Finally, the methanotrophs are particularly appealing as bioremediation agents in methane-containing environments, as their primary enzymes have a broad substrate range that can transform various hydrocarbons, including aromatic compounds and halogenated aliphatics. These diverse bacteria are an important global methane sink and this importance is set to increase as anthropogenic emissions increase over the coming decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Hasin A, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PHE (2010) Remediation of chromium(VI) by a methane-oxidizing bacterium. Environ Sci Technol 44(1):400–405

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991a) Product toxicity and cometabolic competitive-inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991b) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol 57(1):228–235

    CAS  Google Scholar 

  • Andreasen RR, Poulsen TG, Iversen N, Roslev P (2013) Stabilization and stimulation of atmospheric methane oxidation in soil and soil biofilters by Al2O3 amendment. Soil Biol Biochem 64:127–135

    Article  CAS  Google Scholar 

  • Antony CP, Doronina NV, Boden R, Trotsenko YA, Shouche YS, Murrell JC (2012) Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. Int J Syst Evol Microbiol 62(7):1613–1618

    Article  CAS  Google Scholar 

  • Azad MA, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59(8):703–714

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  Google Scholar 

  • Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65(5):1826–1833

    CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47(3):265–277

    Article  CAS  Google Scholar 

  • Bodelier PL, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403(6768):421–424

    Article  CAS  Google Scholar 

  • Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48(3):305–312

    Article  CAS  Google Scholar 

  • Brigmon RL (2001) Methanotrophic bacteria: use in bioremediation. U.S. Report No. WSRC-MS-2001-00058 37831–0062. Department of Energy, Oak Ridge

    Google Scholar 

  • Cabral A, Arteaga K, Rannaud D, Aït-Benichou S, Pouët M, Allaire S, Jugnia L, Greer C (2007) Analysis of methane oxidation and dynamics of methanotrophs within a passive methane oxidation barrier. In: 11th international waste management and landfill symposium, Sta. M. di Pula, Italy

    Google Scholar 

  • Chang WK, Criddle C (1995) Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. Biodegradation 6(1):1–9

    Article  CAS  Google Scholar 

  • Chanton JP (2005) The effect of gas transport on the isotope signature of methane in wetlands. Org Geochem 36(5):753–768

    Article  CAS  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6(2):208

    Article  Google Scholar 

  • Colby J, Stirling D, Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers, and acyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    Article  CAS  Google Scholar 

  • Costa C, Dijkema C, Friedrich M, Garcia-Encina P, Fernandez-Polanco F, Stams AJM (2000) Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl Microbiol Biotechnol 53(6):754–762

    Article  CAS  Google Scholar 

  • Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47(6):483–492

    Article  CAS  Google Scholar 

  • Davies TR (1973) Isolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrification. Water Res 7(4):575–579

    Article  CAS  Google Scholar 

  • DeFlaun MF, Ensley BD, Steffan RJ (1992) Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium. Nat Biotechnol 10(12):1576–1578

    Article  CAS  Google Scholar 

  • Delgado JA, Mosier AR (1996) Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J Environ Qual 25(5):1105–1111

    Article  CAS  Google Scholar 

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77(13):4429–4436

    Article  CAS  Google Scholar 

  • Dever SA, Swarbrick GE, Stuetz RM (2007) Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Manag 27(2):277–286

    Article  CAS  Google Scholar 

  • Dever SA, Swarbrick GE, Stuetz RM (2011) Passive drainage and biofiltration of landfill gas: results of Australian field trial. Waste Manag 31(5):1029–1048

    Article  CAS  Google Scholar 

  • Dijk J, Huizing HJ, de Vries C, Bone LJ (2012) An investigation into novel concepts to remove GHG methane from dairy stable ventilation air at ultra-low concentrations by the use of methanotrophic bacteria. Innovation Network Reinvent Agribusiness Rural Areas, Netherlands 29

    Google Scholar 

  • Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5(5):757–764

    CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53(5):1231–1239

    Article  CAS  Google Scholar 

  • Einola JKM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39(5):1156–1164

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548

    Article  CAS  Google Scholar 

  • Feig AL, Lippard SJ (1994) Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry. Chem Rev 94(3):759–805

    Article  CAS  Google Scholar 

  • Gardenas AI, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Katterer T, Knicker H, Nilsson SI, Nasholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43(4):702–717

    Article  CAS  Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23(7):609–619

    Article  CAS  Google Scholar 

  • Gebert J, Singh BK, Pan Y, Bodrossy L (2009) Activity and structure of methanotrophic communities in landfill cover soils. Environ Microbiol Rep 1(5):414–423

    Article  CAS  Google Scholar 

  • Gerritse J, Renard V, Visser J, Gottschal JC (1995) Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Microbiol Biotechnol 43(5):920–928

    Article  CAS  Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70(9):5057–5065

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  • Harremoes P, Henze Christensen M (1971) Denitrification with methane (Denitrifikation med methan). Vand 1:7–11

    Google Scholar 

  • Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26(4):408–416

    Article  CAS  Google Scholar 

  • He R, Ruan A, Jiang C, Shen DS (2008) Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour Technol 99(15):7192–7199

    Article  CAS  Google Scholar 

  • Heimann K, Karthikayan OP, Cires S (2013) A biotechnological approach to mitigate green house gas emissions from coal mine ventilation air in Australia. In: 1st international conference on technologies for sustainable waste management in developing countries, 23–24 August 2013, Guntur, India

    Google Scholar 

  • Henry SM, Grbic-Galic D (1990) Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophs. Microb Ecol 20(1):151–169

    Article  CAS  Google Scholar 

  • Henry SM, Grbic-Galic D (1991) Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl Environ Microbiol 57(1):236–244

    CAS  Google Scholar 

  • Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61(11):2646–2653

    Article  CAS  Google Scholar 

  • Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8(9):1945–1948

    Article  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65(8):3312–3318

    CAS  Google Scholar 

  • Hu ZY, Speth DR, Francoijs KJ, Quan ZX, Jetten MSM (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of anannmox bacterium “Candidatus Jettenia asiatica”. Front Microbiol 3:9

    Article  Google Scholar 

  • Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111(12):4495–4500

    Article  CAS  Google Scholar 

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26(1):33–46

    Article  CAS  Google Scholar 

  • Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17(6):443–452

    Article  CAS  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol Biochem 26(12):1613–1622

    Article  Google Scholar 

  • IPCC (2001) The scientific basis. In: Houghton JT et al (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • IPCC (2013) IPCC Fifth Assessment Report (AR4). Climate change 2013: the physical science basis. In: Stocker TF, Qin D (eds) Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 93–129

    Google Scholar 

  • IRRI (2015) Greenhouse gas mitigation in irrigated rice systems in Asia. http://climatechange.irri.org/projects/mitigation-projects/mirsa

  • Janssen D, Grobben G, Hoekstra R, Oldenhuis R, Witholt B (1988) Degradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteria. Appl Microbiol Biotechnol 29(4):392–399

    Article  CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55(6):2345–2350

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  Google Scholar 

  • Karthikeyan O, Karthigeyan C, Cires S, Heimann K (2015) Review of sustainable methane mitigation and bio-polymer production. Crit Rev Environ Sci Technol 45(15):1579–1610

    Article  CAS  Google Scholar 

  • Kemnitz D, Kolb S, Conrad R (2005) Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ Microbiol 7(4):553–565

    Article  CAS  Google Scholar 

  • Kim HG, Han GH, Eom CY, Kim SW (2008) Isolation and taxonomic characterization of a novel type I methanotrophic bacterium. J Microbiol 46(1):45–50

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823

    Article  CAS  Google Scholar 

  • Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17(9):3219–3232

    Article  CAS  Google Scholar 

  • Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69(11):6703–6714

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  • Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24(5):441–446

    Article  Google Scholar 

  • Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a Type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59(4):960–967

    Google Scholar 

  • Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mussmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35(4):233–238

    Article  CAS  Google Scholar 

  • Kravchenko I, Boeckx P, Galchenko V, Van Cleemput O (2002) Short- and medium-term effects of NH4+ on CH4 and N2O fluxes in arable soils with a different texture. Soil Biol Biochem 34(5):669–678

    Article  CAS  Google Scholar 

  • Kubo M, Purevdorj M (2004) The future of rice production and consumption. J Food Distrbut Res 35((1)):128–142

    Google Scholar 

  • Lakshmanan A, Raj SA, Kareem AA (1994) Biofertilizers enhance dissolved oxygen content in water. Crop Res 82(2):283–286

    Google Scholar 

  • Lakshmi VG, Lakshmanan A, Sankar A, Latha P, Udaya SN (2012) Biofertilizers in minimizing climate change impacts in rice farming. Climarice 9:1–7

    Google Scholar 

  • Lee EH, Moon KE, Ryu HW (2011) Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J Microbiol Biotechnol 21(7):753–756

    Article  Google Scholar 

  • Limbri H, Gunawan C, Rosche B, Scott J (2013) Challenges to developing methane biofiltration for coal mine ventilation air: a review. Water Air Soil Pollut 224(6):1–15

    Article  CAS  Google Scholar 

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9(4):e94641

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun GX (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23(9):1544–1550

    Article  CAS  Google Scholar 

  • Liu JJ, Sun FQ, Wang L, Ju X, Wu WX, Chen YX (2014) Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. J Microbial Biotechnol 7(1):64–76

    Article  CAS  Google Scholar 

  • Long Y, Zhong Z, Yin H, Lin Z, Ye J, He B (2013) Characteristic of methane oxidation coupled to denitrification in cover soils of landfill. Trans Chin Soc Agric Eng 29(15):207–214

    CAS  Google Scholar 

  • Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TL, Zeeman G, Temmink H, Strous M, Op den Camp HJ, Jetten MS (2011) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92(4):845–854

    Article  CAS  Google Scholar 

  • Mandal LN, Mitra RR (1982) Transformation of iron and manganese in rice soils under different moisture regimes and organic matter applications. Plant and Soil 69(1):45–56

    Article  Google Scholar 

  • Mason I (1977) Methane as a carbon source in biological denitrification. J Water Pollut Control Fed 49(5):855–857

    CAS  Google Scholar 

  • McCarty PL, Semprini L (1994) Ground-water treatment for chlorinated solvents. In: Matthews JE (ed) Handbook of bioremediation. Lewis Publishers, Boca Raton, FL, pp 87–116

    Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41(12):2726–2738

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72(2):1346–1354

    Article  CAS  Google Scholar 

  • Morrissey JP, Walsh UF, O’Donnell A, Moenne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81(1–4):599–606

    Article  CAS  Google Scholar 

  • Nelson Y, Jewell W (1993) Vinyl chloride biodegradation with methanotrophic attached films. J Environ Eng 119(5):890–907

    Article  CAS  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotehnol 6(4):261–284

    Article  CAS  Google Scholar 

  • Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76(16):5648–5651

    Article  CAS  Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  CAS  Google Scholar 

  • Park S, Brown KW, Thomas JC (2002) The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag Res 20(5):434–444

    Article  CAS  Google Scholar 

  • Park S, Lee CH, Ryu CR, Sung K (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut 196(1–4):19–27

    Article  CAS  Google Scholar 

  • Pfluger AR, Wu WM, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102(21):9919–9926

    Article  CAS  Google Scholar 

  • Pingak GMF, Sutanto H, Akhdiya A, Rusmana I (2014) Effectivity of methanotrophic bacteria and Ochrobactrum anthropi as biofertilizer and emission reducer of CH4 and N2O in inorganic paddy fields. J Med Bioeng 3(3):217–221

    CAS  Google Scholar 

  • Prasanna R, Kumar V, Kumar S, Yadav A, Tripathi U, Kumar Singh A, Jain MC, Gupta P, Singh PK, Sethunathan N (2002) Methane production in rice soil is inhibited by cyanobacteria. Microbiol Res 157(1):1–6

    Article  Google Scholar 

  • Rachor I, Gebert J, Groengroeft A, Pfeiffer EM (2011) Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag 31(5):833–842

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921

    Article  CAS  Google Scholar 

  • Raja N (2013) Biopesticides and bio-fertilizers: eco-friendly sources for sustainable agriculture. Biofert Biopest 4:1–2

    Google Scholar 

  • Reeburgh WS (2003) Global methane biogeochemistry. In: Ralph FK, Heinrich DH, Karl K (eds) Treatise on geochemistry. Elsevier, 89, p 65

    Google Scholar 

  • Reeburgh WS, Whalen SC, Alperin MJ (1993) The role of methylotrophy in the global methane budget. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Limited, Andover, pp 1–14

    Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68(8):3818–3829

    Article  CAS  Google Scholar 

  • Sadasivam BY, Reddy KR (2015) Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars. J Environ Manage 158:11–23

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251(4):943–953

    Article  CAS  Google Scholar 

  • Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GC, Penner T, Dong X (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 7(5):908–921

    Article  CAS  Google Scholar 

  • Schimel J (2000) Global change: rice, microbes and methane. Nature 403(6768):375–377

    Article  CAS  Google Scholar 

  • Schuetz C, Bogner J, Chanton J, Blake D, Morcet M, Kjeldsen P (2003) Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils. Environ Sci Technol 37(22):5150–5158

    Article  CAS  Google Scholar 

  • Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol 5(10):867–877

    Article  CAS  Google Scholar 

  • Semprini L, Hopkins GD, Grbic-Galic D, McCarthy PL, Roberts PV (1994) A laboratory and field evaluation of enhanced in situ bioremediation of trichloroethylene, cis- and trans-dichloroethylene, and vinyl chloride by methanotrophic bacteria. In: Flathman PE, Jerger DE, Exner JG (eds) Bioremediation: field experience. CRC Press, Boca Raton, FL, pp 383–412

    Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  Google Scholar 

  • Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16(6):1867–1878

    Article  CAS  Google Scholar 

  • Shi Y, Hu SH, Lou JQ, Lu PL, Keller J, Yuan ZG (2013) Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 47(20):11577–11583

    Article  CAS  Google Scholar 

  • Shiemke AK, Cook SA, Miley T, Singleton P (1995) Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys 321(2):421–428

    Article  CAS  Google Scholar 

  • Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100(1):29–30

    CAS  Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  CAS  Google Scholar 

  • Singh JS, Strong PJ (2015) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP, Singh RP (2010) Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agric Ecosyst Environ 139(1–2):74–79

    Article  Google Scholar 

  • Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl Microbiol Biotechnol 39(3):400–404

    Article  CAS  Google Scholar 

  • Smith TJ, Dalton H (2004) Biocatalysis by methane monooxygenase and its implications for the petroleum industry. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Petroleum biotechnology—developments and perspectives, vol 151. Elsevier Science, Amsterdam, pp 177–192

    Chapter  Google Scholar 

  • Smith TJ, Murrell JC (2009) Methanotrophs: biotechnological potential and emerging applications. In: Flickinger M (ed) Encyclopedia of industrial biotechnology. Willey, New York

    Google Scholar 

  • Smith TJ, Murrell JC (2010) Methanotrophs. In: Flickenger MC (ed) Encyclopedia of industrial biotechnology. Wiley, Hoboken, NJ, pp 1–13

    Google Scholar 

  • Smith KS, Costello AM, Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5.1. Appl Environ Microbiol 63(11):4617–4620

    CAS  Google Scholar 

  • Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 39:1826–1831

    Article  CAS  Google Scholar 

  • Stein L, Roy R, Dunfield P (2012) Aerobic methanotrophy and nitrification: processes and connections. Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Strong PJ, McDonald B, Gapes DJ (2011) Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge. Bioresour Technol 102(9):5533–5540

    Article  CAS  Google Scholar 

  • Strong P, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  Google Scholar 

  • Su S, Beath A, Guo H, Mallett C (2005) An assessment of mine methane mitigation and utilisation technologies. Prog Energ Combust Sci 31:123–170

    Article  CAS  Google Scholar 

  • Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour Technol 145:2–9

    Article  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, de Carcer DA, Oruezabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71(5):2687–2694

    Article  CAS  Google Scholar 

  • Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10(2):87–102

    CAS  Google Scholar 

  • Yadav RK, Abraham G, Singh YV, Singh PK (2014) Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad 80(2):301–316

    Article  Google Scholar 

  • Zheng Y, Liu X, Zhang L, Zhou Z, He J (2010) Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil? J Environ Sci 22(12):1936–1943

    Article  Google Scholar 

  • Zhu B, Sanchez J, van Alen TA, Sanabria J, Jetten MSM, Ettwig KF, Kartal B (2011) Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Biochem Soc Trans 39:1822–1825

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter James Strong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Strong, P.J., Karthikeyan, O.P., Zhu, J., Clarke, W., Wu, W. (2017). Methanotrophs: Methane Mitigation, Denitrification and Bioremediation. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_2

Download citation

Publish with us

Policies and ethics