Skip to main content

Microbial Oxidation of Atmospheric Methane in Natural and Agricultural Upland Soils

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Methane is the second most important greenhouse gas in terms of amounts and effect in the atmosphere. Upland soils of the European Russia are important participants in the global carbon budget, but their role as a sink for atmospheric methane is poorly documented, and little information on biodiversity of methanotrophic microorganisms is available. We have found that managed soils from different climatic regions showed decreased methane oxidation rates in both field and laboratory experiments. Large fluctuations were revealed in CH4 uptake process at different time scales (monthly, daily, hourly), and soil organic matter, water content, and temperature were seen as the main environmental controlling factors. Methanotrophic populations of unmanaged soils turned out to be much low diverse and dominated by uncultivated methanotrophs. In Podzoluvisol, Luvisol, and Meadow Kastanozem, we have identified deeply branching pmoA sequences of Alphaproteobacteria referred as NSUC (natural soil uncultivated cluster), formed novel monophyletic cluster with other uncultured methanotrophs. Pronounced shift to cultured methanotrophs was observed in the same soils after agricultural loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel GCJ, Stralis-Pavese N, Sessitsch A, Bodrossy L (2009) Grazing affects methanotroph activity and diversity in an alpine meadow soil. Environ Microbiol Rep 1:457–465

    Article  CAS  Google Scholar 

  • Acton SD, Baggs EM (2011) Interactions between N application rate, CH4 oxidation and N2O production in soil. Biogeochemistry 103:15–26

    Article  CAS  Google Scholar 

  • Adamsen APS, King GM (1993) Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol 59:485–490

    CAS  Google Scholar 

  • Aronson EL, Allison SD, Helike BR (2013) Environmental impacts on the diversity of methane cycling microbes and resultant functions. Front Microbiol 4:47–56

    Article  Google Scholar 

  • Bárcena TG, Finster KW, Yde JC (2011) Spatial patterns of soil development, methane oxidation, and methanotrophic diversity along a receding glacier forefield, Southeast Greenland. Arct Antarct Alp Res 43:178–188

    Article  Google Scholar 

  • Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46

    Article  CAS  Google Scholar 

  • Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101:261–270

    CAS  Google Scholar 

  • Bender M, Conrad R (1993) Kinetics of CH4 oxidation in oxic soils. Chemosphere 26:687–696

    Article  CAS  Google Scholar 

  • Bengtson P, Basiliko N, Dumont MG, Hills M, Murrell JC, Roy R, Grayston SJ (2009) Links between methanotroph community composition and CH4 oxidation in a pine forest soil. FEMS Microbiol Ecol 70:356–366

    Article  CAS  Google Scholar 

  • Billings SA, Richter DD, Yarie J (2000) Sensitivity of soil methane fluxes to reduced precipitation in boreal forest soils. Soil Biol Biochem 32:1431–1441

    Article  CAS  Google Scholar 

  • Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Environ Sustain 3:379–388

    Article  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  Google Scholar 

  • Bodelier PLE, Kamst M, Meima-Franke M, Stralis-Pavese N, Bodrossy L (2009) Whole-community genome amplification (WCGA) leads to compositional bias in methane-oxidizing communities as assessed by pmoA-based microarray analyses and QPCR. Environ Microbiol Rep 1(5):434–441

    Article  CAS  Google Scholar 

  • Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J (2013) Microbial minorities modulate methane consumption through niche partitioning. ISME J 7:2214–2228

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    Article  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25:178–183

    Article  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O, Villarvo I (1997) Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst 49:91–95

    Article  CAS  Google Scholar 

  • Börjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30:369–376

    Article  Google Scholar 

  • Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003) Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soci Am J 67:1888–1896

    Article  CAS  Google Scholar 

  • Born M, Dorr H, Levin N (1990) Methane consumption in aerated soils of the temperate zone. Tellus B 42:2–8

    Article  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microb Ecol 40:85–95

    Article  CAS  Google Scholar 

  • Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK, Bykova SA, Kolganova TV, Gal’chenko VF (2002) A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 71:425–432

    Article  CAS  Google Scholar 

  • Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, Whitel J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  CAS  Google Scholar 

  • Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  CAS  Google Scholar 

  • Bowden RD, Newkirk KM, Rullo GM (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol Biochem 30:1591–1597

    Article  CAS  Google Scholar 

  • Bykova S, Boeckx P, Kravchenko I, Galchenko V, Van Cleemput O (2007) Impact of fertilization type and CH4 concentration on methane oxidation and methanotrophic diversity in arable soils. Biol Fertil Soils 43:341–348

    Article  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycles 9:1–10

    Article  CAS  Google Scholar 

  • Castro MS, Gholz HL, Clark KL, Steudler PA (2000) Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations. Can J For Res 30:1534–1542

    Article  Google Scholar 

  • Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JA, JC M (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microb Ecol 62:12–23

    Article  CAS  Google Scholar 

  • Chan ASK, Parkin TB (2001) Methane oxidation and production activity in soils from natural and agricultural ecosystems. J Environ Qual 30:1896–1903

    Article  CAS  Google Scholar 

  • Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459

    Article  CAS  Google Scholar 

  • Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12:28–32

    Article  CAS  Google Scholar 

  • Costello AM, Lindstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  Google Scholar 

  • De Visscher A, Schippers M, Van Cleemput O (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fertil Soils 33:231–237

    Article  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479

    Article  CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 3:955–969

    Article  Google Scholar 

  • Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43:299–308

    Article  CAS  Google Scholar 

  • Dedysh SN, Ricke P, Liesack W (2004) NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313

    Article  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670

    Article  CAS  Google Scholar 

  • Degelmann DM, Borken W, Drake HL, Kolb S (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. Appl Environ Microbiol 76:3228–3235

    Article  CAS  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6:183–194

    Article  CAS  Google Scholar 

  • Dorr N, Glaser B, Kolb S (2010) Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites. Appl Environ Microbiol 76:307–1310

    Article  CAS  Google Scholar 

  • Dunfield PF (2007) The soil methane sink. In: Reay D, Hewitt CN, Smith K, Grace J (eds) Greenhouse gas sinks. CAB International, Wallingford, pp 152–170

    Chapter  Google Scholar 

  • Dunfield PF, Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61:3129–3135

    CAS  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a Type II methanotroph. Appl Environ Microbiol 65:1009–1014

    CAS  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultatively methanotrophic bacterium possessing a particulate methane monooxygenase. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  Google Scholar 

  • Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Glob Biogeochem Cycles 21:1–9

    Article  CAS  Google Scholar 

  • Eller G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of Type I and Type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol Lett 198:31–37

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Fjellbirkeland A, Torsvik V, Ovreas L (2001) Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie Van Leeuwenhoek 79:209–217

    Article  CAS  Google Scholar 

  • Flechard CR, Neftel A, Jocher M, Ammann C, Fuhrer J (2005) Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biol 11:2114–2127

    Article  Google Scholar 

  • Freitag TE, Prosser JI (2009) Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl Environ Microbiol 75:6679–6687

    Article  CAS  Google Scholar 

  • Freitag TE, Toet S, Ineson P, Prosser JI (2010) Links between methane £ux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microb Ecol 73:157–165

    CAS  Google Scholar 

  • Galchenko VF, Abramochkina FN, Bezrukova LV, Sokolova EN, Ivanov MV (1988) The species structure of aerobic methanotrophic microflora in the Black Sea. Microbiology 57:305–311

    Google Scholar 

  • Gebert J, Singh BK, Pan Y, Bodrossy L (2009) Activity and structure of methanotrophic communities in landfill cover soils. Environ Microbiol Rep 1:414–423

    Article  CAS  Google Scholar 

  • Goldman MB, Groffman PM, Pouyat RV, McDonnell MJ, Pickett STA (1995) CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol Biochem 27:281–286

    Article  CAS  Google Scholar 

  • Green SJ, Prakash O, Gihring TM, Akob DM, Jasrotia P, Jardine PM, Watson DB, Brown SD, Palumbo AV, Joel E, Kostka JE (2010) Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination. Appl Environ Microbiol 76:3244–3254

    Article  CAS  Google Scholar 

  • Gulledge J, Schimel JP (1998) Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4 + inhibition. Appl Environ Microbiol 64:4291–4298

    CAS  Google Scholar 

  • Halet D, Boon N, Verstraete W (2006) Community dynamics of methanotrophic bacteria during composting of organic matter. J Biosci Bioeng 101:297–302

    Article  CAS  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491

    Article  CAS  Google Scholar 

  • Han B, Chen Y, Abell G, Jiang H, Bodrossy L, Zhao J, Murrell JC, Xing X-H (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70:196–207

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Haruta S (2013) Rediscovery of the microbial world in microbial ecology. Microbes Environ 28:281–284

    Article  Google Scholar 

  • Ho A, Reim A, Kim SY, Meima-Franke M, Termorshuizen A, de Boer W, van der Putten WH, Bodelier PL (2015) Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Global Change Biol 10:3864–3879

    Article  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell G (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Article  CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318

    CAS  Google Scholar 

  • Horz HP, Yimba MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  CAS  Google Scholar 

  • Horz HP, Raghubanshi AS, Heye J, Kammann C, Conrad R, Dunfield PF (2002) Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 41:247–257

    Article  CAS  Google Scholar 

  • Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  CAS  Google Scholar 

  • Hou L-Y, Wang Z-P, Wang J-M, Wang B, Zhou S-B, Li L-H (2012) Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma 189–190:415–422

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  Google Scholar 

  • Hütsch BW (1998) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol Fertil Soils 28:27–35

    Article  Google Scholar 

  • Hyman MR, Wood PM (1983) Methane oxidation by Nitrosomonas europaea. Biochem J 212(1):31–37

    Article  CAS  Google Scholar 

  • Ishizuka S, Sakata T, Ishizuka K (2000) Methane oxidation in Japanese forest soils. Soil Biol Biochem 32:769–777

    Article  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 °C and pH 2 by a thermoacidophhhilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304

    Article  CAS  Google Scholar 

  • Jacinthe PA, Lal K (2006) Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio. Geoderma 136:598–608

    Article  CAS  Google Scholar 

  • Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, Richnow HH, Vogt C (2010) Protein-based stable isotope probing. Nat Proto 5:1957–1966

    Article  CAS  Google Scholar 

  • Jensen S, Olsen RA (1998) Atmospheric methane consumption in adjacent arable and forest systems. Soil Biol Biochem 30:1187–1193

    Article  CAS  Google Scholar 

  • Jones RD, Morita RY (1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol 45:401–410

    CAS  Google Scholar 

  • Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 35:1785–1794

    Article  CAS  Google Scholar 

  • Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 3:667–673

    Article  Google Scholar 

  • Kirka JL, Beaudettea LA, Hartb M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Quéré CL, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Kizilova A, Yurkov A, Kravchenko I (2013) Aerobic methanotrophs in natural and agricultural soils of European Russia. Diversity 5:541–556

    Article  Google Scholar 

  • Klemedtsson AK, Klemedtsson L (1997) Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol Fertil Soils 25:296–301

    Article  CAS  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317

    Article  CAS  Google Scholar 

  • Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714

    Article  CAS  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assay. Appl Environ Microb 69:2423–2429

    Article  CAS  Google Scholar 

  • Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  Google Scholar 

  • Kravchenko I, Boeckx P, Galchenko V, Van Cleemput O (2002) Short- and medium-term effects of NH4+ on CH4 and N2O fluxes in arable soils with a different texture. Soil Biol Biochem 34:669–678

    Article  CAS  Google Scholar 

  • Kravchenko IK, Semenov VM, Kuznetsova TV, Dulov LE, Semenova NA, Gal’chenko VF, Boeckx P, Van Cleemput O (2004) Methane oxidation and nitrogen transformations in gray forest soil. Eur Soil Sci 37:49–56

    Google Scholar 

  • Kravchenko IK, Semenov VM, Kuznetsova TV, Bykova SA, Dulov LE, Pardini G, Gispert M, Boeckx P, Van Cleemput O, Gal’chenko VF (2005) Physicochemical and biological factors affecting atmospheric methane oxidation in gray forest soils. Microbiology 74:216–220

    Article  CAS  Google Scholar 

  • Kravchenko IK, Kizilova AK, Bykova SA, Men’ko EV, Gal’chenko VF (2010) Molecular analysis of high-affinity methane oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses. Microbiology 79:105–113

    Article  CAS  Google Scholar 

  • Kravchenko I, Sukhacheva M, Kizilova A (2014) Characterization of methanotrophic bacterial populations in natural and agricultural aerobic soils of the European Russia. Geophysical Res Abst 16:EGU2014–EG14349

    Google Scholar 

  • Lau E, Ahmad A, Steudler PA, Cavanaugh CM (2007) Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane. FEMS Microbiol Ecol 60:490–500

    Article  CAS  Google Scholar 

  • Lau E, Nolan EJ IV, Dillard ZW, Dague RD, Semple AL, Wentzell WL (2015) High throughput sequencing to detect differences in methanotrophic Methylococcaceae and Methylocystaceae in surface peat, forest soil, and Sphagnum moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 3:113–136

    Article  Google Scholar 

  • Leckie SE (2005) Methods of microbial community profiling and their application to forest soils. Forest Ecol Manage 220:88–106

    Article  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  CAS  Google Scholar 

  • Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J 5:1683–1691

    Article  CAS  Google Scholar 

  • Lin J-L, Radajewski S, Eshinimaev BT, Trotsenko YA, McDonald IR, Murrell JC (2004) Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6:1049–1060

    Article  CAS  Google Scholar 

  • Lin JL, Joye SB, Scholten JCM, Schäfer H, McDonald IR, Murrell JC (2005) Analysis of methane monooxygenase genes in Mono Lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 71:6458–6462

    Article  CAS  Google Scholar 

  • Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117

    Article  CAS  Google Scholar 

  • Liu B, Morkved PT, FrostegÃ¥rd A, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417

    Article  CAS  Google Scholar 

  • Liu AC, Chou CY, Chen LL, Kuo CH (2015) Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis. J Biotechnol 194:124–131

    Article  CAS  Google Scholar 

  • Lüke C, Krause S, Cavigioli S, Greppi D, Lupotto E, Frenzel P (2010) Biogeography of wetland rice methanotrophs. Environ Microbiol 12:862–872

    Article  CAS  Google Scholar 

  • Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosquencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309

    Article  CAS  Google Scholar 

  • Luo GJ, Kiese R, Wolf B, Butterbach-Bahl K (2013) Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10:3205–3219

    Article  CAS  Google Scholar 

  • Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  Google Scholar 

  • MacDonald JA, Skiba U, Sheppard LJ, Hargreaves KJ, Smith KA, Fowler D (1996) Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils. Biogeochemistry 34:113–132

    Article  CAS  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey M (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  Google Scholar 

  • Manucharova NA, Stepanov AL, Umarov MM (2001) Peculiarities of microbial transformation of nitrogen in water-stable aggregates of soils of different types. Eur Soil Sci 10:1261–1267

    Google Scholar 

  • Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  CAS  Google Scholar 

  • Maxfield PJ, Hornibrook ERC, Evershed RP (2008) Acute impact of agriculture on high-affinity methanotrophic bacterial populations. Environ Microbiol 10:1917–1924

    Article  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  CAS  Google Scholar 

  • Meixner FX, Yang WX (2006) Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land. In: D’Odorico P, Porporato A (eds) Dryland ecohydrology. Springer, Berlin, pp 233–255

    Chapter  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:21346–21354

    Article  CAS  Google Scholar 

  • Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332

    Article  CAS  Google Scholar 

  • Myrold DD, Zeglin LH, Jansson JK (2013) The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78:3–10

    Article  CAS  Google Scholar 

  • Nazaries L, Tate KR, Ross JD, Singh J, Dando J, Saggar S, Baggs EM, Millard P, Murrell JC, Singh BK (2011) Response of methanotrophic communities to afforestation and reforestation in New Zealand. ISME J 5:1832–1836

    Article  CAS  Google Scholar 

  • Nicolaisen MH, Baelum J, Jacobsen CS, Sorensen J (2008) Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environ Microbiol 10:571–579

    Article  CAS  Google Scholar 

  • Park JR, Moon S, Ahn YM, Kim JY, Nam K (2005) Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environ Technol 26:93–102

    Article  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  Google Scholar 

  • Priemé A, Christensen S (1997) Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol Biochem 29:1165–1172

    Article  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WI, Schouten S, Damsté JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–992

    Article  CAS  Google Scholar 

  • Reaya DS, Nedwella DB, McNamara N, Ineson P (2005) Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biol Biochem 37:719–730

    Article  CAS  Google Scholar 

  • Roalkvam I, Jorgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, Lanzén A, Haflidason H, Steen IH (2011) New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 78:233–243

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 4:283–290

    Google Scholar 

  • Roslev P, Iversen N, Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl Environ Microbiol 63:874–880

    CAS  Google Scholar 

  • Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070

    CAS  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1:77–91

    Article  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K (2004) Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res 109:D17

    Article  CAS  Google Scholar 

  • Schnell S, King GM (1996) Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol 62:3203–3209

    CAS  Google Scholar 

  • Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Sicilliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol 5:867–877

    Article  CAS  Google Scholar 

  • Seghers D, Verthe K, Reheul D, Bulcke R, Siciliano SD, Verstraete W, Top EM (2006) Effect of longerm herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microb Ecol 46:139–146

    Article  CAS  Google Scholar 

  • Semenov VM, Kravchenko IK, Kuznetsova TV, Semenova NA, Bykova SA, Dulov LE, Gal’chenko VF, Pardini G, Gispert M, Boeckx P, Van Cleemput O (2004) Seasonal dynamics of atmospheric methane oxidation in gray forest soils. Microbiology 73:356–362

    Article  CAS  Google Scholar 

  • Semenov V, Kuznetsova T, Semenov A, Kravchenko I (2013) Methane emission and consumption in Russian gray forest agricultural soil: monthly, daily and diurnal variations and effect of mineral and organic fertilization. World Appl Sci J 24:528–533

    Google Scholar 

  • Serrano-Silva N, Sarria-Guzman Y, Dendooven L, Luna-Guido M (2014) Methanogenesis and methanotrophy in soil: a review. Pedosphere 24:291–307

    Article  CAS  Google Scholar 

  • Sharma S, Radl V, Hai B, Kloos K, Mrkonjic M, Engel FM, Schauss K, Schloter M (2007) Quantification of functional genes from prokaryotes in soil by PCR. J Microbiol Methods 68:445–452

    Article  CAS  Google Scholar 

  • Shrestha M, Abraham WR, Shrestha PM, Noll M, Conrad R (2008) Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids. Environ Microbiol 10:400–412

    Article  CAS  Google Scholar 

  • Shvaleva A, Siljanen HM, Correia A, Costa e Silva F, Lamprecht RE, Lobo-do-Vale R, Bicho C, Fangueiro D, Anderson M, Pereira JS, Chaves MM, Cruz C, Martikainen PJ (2015) Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference. Front Microbiol 6:1104

    Article  Google Scholar 

  • Singh BK, Tate KR, Kolipaka G, Hedley CB, Macdonald CA, Millard P, Murrel JC (2007) Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria. Appl Environ Microbiol 73:5153–5161

    Article  CAS  Google Scholar 

  • Slobodova NV, Kolganova NV, Boulygina ES, Kuznetsov BB, Tourova TP, Kravchenko IK (2006) Comparative characterization of methanotrophic enrichments by serological and molecular methods. Microbiology 75:336–342

    Article  CAS  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology FEMS Microb Ecol 67:6–20

    Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken R, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Prieme A, Fowler D, MacDonald A, Skiba U, Klemedtsson I, Kasimir-Klemedtsson A, Degorska A, Orlanski P (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol 6:791–803

    Article  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Re AY (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Article  Google Scholar 

  • Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol Biochem 33:145–153

    Article  CAS  Google Scholar 

  • Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–316

    Article  Google Scholar 

  • Stevenson D, Dentener F, Schultz M, Ellingsen K, van Noije T, Wild O, Zeng G, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Butler T, Cofala J, Collins W, Derwent R, Doherty R, Drevet J, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen I, Krol M, Lamarque JF, Lawrence M, Montanaro V, Muller J-F, Pitari G, Prather M, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage N, Shindell D, Strahan S, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111:1–23

    Article  CAS  Google Scholar 

  • Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci 103:2363–2367

    Article  CAS  Google Scholar 

  • Striegl RG (1993) Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere 26:715–720

    Article  CAS  Google Scholar 

  • Strieg RG, McConnaughey TA, Thorstenson DC, Weeks EP, Woodward JC (1992) Consumption of atmospheric methane by desert soils. Nature 357:145–147

    Article  Google Scholar 

  • Sundh I, Borga P, Nilsson M, Svensson BH (1995a) Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiol Ecol 8:103–112

    Article  Google Scholar 

  • Sundh I, Mikkela C, Nilsson M, Svensson BH (1995b) Potential aerobic methane oxidation in a Sphagnum-dominated peatland-controlling factors and relation to methane emission. Soil Biol Biochem 27:829–837

    Article  Google Scholar 

  • Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems. Soil Sci Soc Am J 69:1722–1729

    Article  CAS  Google Scholar 

  • Tamai N, Takenaka C, Ishizuka S, Tezuka T (2003) Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan. Soil Biol Biochem 35:633–641

    Article  CAS  Google Scholar 

  • Tate KR, Ross DJ, Scott NA, Rodda NJ, Townsend JA, Arnold GC (2006) Post-harvest patterns of carbon dioxide production, methane uptake and nitrous oxide production in a Pinus radiata D. Don plantation. Forest Ecol Manage 228:40–50

    Article  Google Scholar 

  • Tlustos P, Willison TW, Baker JC, Murphy DV, Pavlikova D, Goulding KWT, Powlson DS (1998) Short-term effects of nitrogen on methane oxidation in soils. Biol Fertil Soils 28:64–70

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  Google Scholar 

  • Vecherskaya MS, Galchenko VF, Sokolova EN, Samarkin VA (1993) Activity and species composition of aerobic methanotrophic communities in tundra soils. Curr Microbiol 27:181–184

    Article  CAS  Google Scholar 

  • Von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers. Global Biogeochem Cycles 21:1–9

    Article  CAS  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 10:2456–2463

    Article  CAS  Google Scholar 

  • Wahlen M (1993) The global methane cycle. Ann Rev Earth Planet Sci 21:407–426

    Article  CAS  Google Scholar 

  • Wang Z-P, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol Biochem 35:427–433

    Article  CAS  Google Scholar 

  • Zhang W, Mo J, Zhou G, Gundersen P, Fang Y, Lu X, Zhang T, Dong S (2008) Methane uptake responses to nitrogen deposition in three tropical forests in southern China. J Geophys Res 113:1–10

    Article  Google Scholar 

  • Zhou XQ, Wang YF, Huang XZ, Hao YB, Tian JQ, Wang JZ (2008) Effects of grazing by sheep on the structure of methane-oxidizing bacterial community of steppe soil. Soil Biol. Biochem 40:258–261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Russian Foundation for Basic Research (grants 13-04-00603 and 16-04-00136) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina K. Kravchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kravchenko, I.K. (2017). Microbial Oxidation of Atmospheric Methane in Natural and Agricultural Upland Soils. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_10

Download citation

Publish with us

Policies and ethics