Skip to main content

Methanotrophs: An Emerging Bioremediation Tool with Unique Broad Spectrum Methane Monooxygenase (MMO) Enzyme

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

This review is proposed to emphasize the contribution of methanotrophs as potential bioagents in mitigating the effect of toxic environmental pollutants like heavy metals, petroleum hydrocarbons, lindane (γ-HCH) and trichloroethylene (TCE). Methane-oxidizing bacteria (methanotrophs) are widespread in natural environments and have emerged as one of the potential bioagents in the environmental remediation. Methanotrophs are fast emerging as potential tools of bioremediation due to the presence of methane monooxygenase (MMOs: pMMOs and sMMO) enzymes with unique characteristics of utilizing the broad spectrum of organic substrates. The MMOs can co-metabolize aliphatic halides, aromatic compounds, heavy metals, etc. The significant role of MMOs in biodegradation activity of methanotrophs, examined in situ condition, supports the argument that pMMO performed better in methane-augmented bioremediation. Stimulated rate of methanotrophic bioremediation could be better accomplished through the addition of methane, oxygen and other nutrients. Defining the temporal and spatial relationships and population dynamics of methanotrophs in natural environmental setting would be the crucial factors for evaluation of bioremediation potential. Besides, adaptability, genetic modifications and manageability of indigenous methanotrophs are the important components required for achieving a viable, more sustainable and eco-friendly bioremediation technology. So, it is considered that application of methanotrophs, particularly extremophilic methanotrophs, would help us to overcome the limitations of conventional methods of pollution mitigation due to their unique physiology, phylogenetic diversity and presence of MMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2008) Influence of the application of sugarcane bagasse on lindane (γ-HCH) mobility through soil column: implication for biotreatment. Bioresour Technol 99:8961–8966

    Article  CAS  Google Scholar 

  • Aislabie J, Balks MR, Foght M, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1274

    Article  CAS  Google Scholar 

  • Bakke B, Stewart PA, Waters MA (2007) Uses of and exposure to trichloroethylene in US industry: a systematic literature review. J Occup Environ Hyg 4:375–390

    Article  CAS  Google Scholar 

  • Bhatt P, Kumar MS, Chakrabarti T (2007) Assessment of bioremediation possibilities of technical grade hexachlorocyclohexane (tech-HCH) contaminated soils. J Hazard Mate 143:349–353

    Article  CAS  Google Scholar 

  • Boden R, Murrell JC (2011) Response to mercury (II) in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 324:106–110

    Article  CAS  Google Scholar 

  • Bolt HM (2005) Vinyl chloride—a classical industrial toxicant of new interest. Crit Rev Toxicol 35:307–323

    Article  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic, marine salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  CAS  Google Scholar 

  • Brigmon RL, Anderson TA, Fliermans CB (1999) Methanotrophic bacteria in the rhizosphere of trichloroethylene-degrading plants. Inter J Phytorem 1:241–253

    Article  CAS  Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2:587–594

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcıa J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Lett 25:335–347

    Article  CAS  Google Scholar 

  • Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW et al (2006) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100:2150–2161

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 11:1–13

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  Google Scholar 

  • Daugulis AJ, McCracken CM (2003) Microbial degradation of high and low molecular weight polyaromatic hydrocarbons in a two-phase partitioning bioreactor by two strains of Sphingomonas sp. Biotechnol Lett 25:1441–1444

    Article  CAS  Google Scholar 

  • Davidson J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM et al (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  Google Scholar 

  • DeMarco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80

    Article  CAS  Google Scholar 

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Ronald LC (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in an Eastern Snake River Plain Aquifer. Appl Environ Microbiol 71:2016–2025

    Article  CAS  Google Scholar 

  • Ferris FG, Konhauser KO, Lyven B, Pedersen K (1999) Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol J 16:181–192

    Article  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TS (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Hanson RS, Tsien HC, Tsuji K, Brusseau GA, Wackett LP (1990) Biodegradation of low molecular-weight halogenated hydrocarbons by methanotrophic bacteria. FEMS Microbiol Lett 87:273–278

    Article  CAS  Google Scholar 

  • Hasin AA, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PE (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405

    Article  Google Scholar 

  • Hazen TC, Chakraborty R, Fleming JM, Gregory IR, Bowman JP, Jimenez L, Zhang D, Pfiffner SM, Brockman FJ, Sayler GS (2009) Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch Microbiol 191:221–232

    Article  CAS  Google Scholar 

  • Henry SM, Grbic-Galic D (1994) Biodegradation of trichloroethylene in methanotrophic systems and implications for process applications. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, pp 314–344

    Google Scholar 

  • Im J, Semrau JD (2001) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142

    Article  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacteria belonging to the Verrucomicrobia phylum. Proc Nat Acad Sci U S A 105:300–304

    Article  CAS  Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  Google Scholar 

  • Jenkins MB, Chen J-H, Kadner DJ, Lion LW (1994) Methanotrophic bacteria and facilitated transport of pollutants in aquifer material. Appl Environ Microbiol 60:3491–3498

    CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang PX, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Kikuchi T, Iwasaki K, Nishihara H, Takamura Y, Yagi O (2002) Quantitative and rapid detection of the trichloroethylene-degrading bacterium Methylocystis sp. M in groundwater by real-time PCR. Appl Microbiol Biotechnol 59:731–736

    Article  CAS  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615

    Article  CAS  Google Scholar 

  • Knapp CW, Fowle DA, Kulczycki E, Roberts JA, Graham DW (2007) Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proc Nat Acad Sci U S A 104:12040–12045

    Article  CAS  Google Scholar 

  • Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509

    Article  CAS  Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64:1106–1114

    CAS  Google Scholar 

  • Lontoh S, Zahn JA, DiSpirito AA, Semrau JD (2000) Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol Lett 186:109–113

    Article  CAS  Google Scholar 

  • Maymo-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by Dehalococcoides ethenogenes 195. Appl Environ Microbiol 65:3108–3113

    CAS  Google Scholar 

  • McCue T, Hoxworth S, Randall AA (2002) Degradation of halogenated aliphatic compounds utilizing sequential anaerobic/aerobic treatments. Water Sci Technol 47:79–84

    Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of soluble methane monooxygenase containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255:225–232

    Article  CAS  Google Scholar 

  • Mertens B, Boon N, Verstraete W (2005) Stereospecific effect of hexachlorocyclohexane on activity and structure of methanotrophic communities. Environ Microbiol 7:660–669

    Article  CAS  Google Scholar 

  • Newby DT, Reed DW, Petzke LM, Igoe AL, Delwiche ME, Roberto FF, McKinley JP, Whiticar MJ, Colwell FS (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol Ecol 48:333–344

    Article  CAS  Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113:111–117

    Article  CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, Van Der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57:7–14

    CAS  Google Scholar 

  • Øverland M, Tauson AH, Shearer K, Skrede A (2010) Evaluation of methane-utilizing bacteria products as feed ingredients for monogastric animals. Arch Anim Nutr 64:171–189

    Article  Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  CAS  Google Scholar 

  • Pelletier E, Delille D, Delille B (2004) Effectiveness of crude oil bioremediation in sub-Antarctic, intertidal sediments; chemistry and toxicity of oiled residues. Mar Environ Res 57:311–327

    Article  CAS  Google Scholar 

  • Pfiffner SM, Palumbo AV, Phelps TJ, Hazen TC (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. J Ind Microbiol Biotechnol 18:204–212

    Article  CAS  Google Scholar 

  • Rike AG, Haugen KB, Engene B (2005) In situ bioremediation of hydrocarbons in Arctic soil at sub-zero temperature-field monitoring and theoretical simulation of the microbial activation temperature at a Spitsberg contaminated site. Cold Reg Sci Technol 41:189–209

    Article  Google Scholar 

  • Rockne KJ, Strand SE (2003) Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:1877–1887

    Article  Google Scholar 

  • Rockne KJ, Stensel HD, Herwig RP, Strand SE (1998) PAH degradation and bioaugmentation by a marine methanotrophic enrichment. Bioremed J 1:209–222

    Article  CAS  Google Scholar 

  • Rubinos DA, Villasuso R, Muniategui S, Barral MT, Diaz-Fierros F (2007) Using the land farming technique to remediate soils contaminated with hexachlorocyclohexane isomers. Water Air Soil Pollut 181:385–399

    Article  CAS  Google Scholar 

  • Scott CS, Chiu WA (2006) Trichloroethylene cancer epidemiology: a consideration of select issues. Environ Health Perspect 114:1471–1478

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Shigematsu T, Hanada S, Eguchi M, Kamagata Y, Kanagawa T, Kurane R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65:5198–5206

    CAS  Google Scholar 

  • Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK (2009) Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresour Technol 100:2469–2474

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotechnol J 10:1–20

    Google Scholar 

  • Simpson RD, Smith SDA, Pople AR (1995) The effects of a spillage of diesel fuel on a rocky shore in the sub-Antarctic region (Macquarie Island). Mar Pollut Bull 31:367–371

    Article  CAS  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Ind J Microbiol 48:35–40

    Article  Google Scholar 

  • Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100(1):29–30

    CAS  Google Scholar 

  • Singh JS (2013a) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24

    Article  Google Scholar 

  • Singh JS (2013b) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015a) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS (2015b) Biodiversity: current perspectives. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015c) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Article  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  CAS  Google Scholar 

  • Singh JS, Singh DP (2012) Reforestation: a potential approach to mitigate the excess CH4 build-up. Ecol Manag Restor 13(3):245–248

    Article  Google Scholar 

  • Singh JS, Singh DP (2013a) Impact of anthropogenic disturbances on methanotrophs abundance in dry tropical forest ecosystems, India. Expert Opin Environ Biol 2:1–3

    Google Scholar 

  • Singh JS, Singh DP (2013b) Plant Growth Promoting Rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Netherlands, pp 307–319

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP, Singh RP (2010) Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agri Eco Environ 139:74–79

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011c) Coal fly ash and farmyard manure amendments in dry-land paddy agriculture field: effect on N-dynamics and paddy productivity. Appl Soil Ecol 47:133–140

    Article  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011d) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Sinninghe Damste JS, Schouten S, Bowman JP, Rijpstra WIC (2000) Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett 186:193–195

    Article  Google Scholar 

  • Stein LY, Yoon S, Semrau JD, DiSpirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MJ, Op den Camp HJM, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser H, Jetten MSM, Lajus A, Land ML, Lapidus A, Lucas S, Medigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498

    Article  CAS  Google Scholar 

  • Sullivan JP, Dickinson D, Chase HA (1998) Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit Rev Microbiol 124:335–373

    Article  Google Scholar 

  • Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Furuya K (2001) Distribution of methanotrophs in trichloroethylene-contaminated aquifers in a natural gas field. Geomicrobiol J 18:387–399

    Article  Google Scholar 

  • Takeuchi M, Nanba K, Yoshida M, Nirei H, Furuya K (2004) Natural groundwater of a gas field utilizable for a bioremediation of trichloroethylene-contamination. Environ Geol 45:891–898

    Article  CAS  Google Scholar 

  • Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K (2005) In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res 39:2438–2444

    Article  CAS  Google Scholar 

  • Thomassin-Lacroix EJM, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Artic soil. Appl Microbiol Biotechnol 59:551–556

    Article  CAS  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  Google Scholar 

  • Tiwari S, Singh JS, Singh DP (2015) Methanotrophs and CH4 sink: effect of human activity and ecological perturbations. Clim Change Environ Sustain 3(1):35–50

    Article  Google Scholar 

  • Travis BJ, Rosenberg ND (1997) Modeling in situ bioremediation of TCE at Savannah River: effects of product toxicity and microbial degradation. Environ Sci Technol 31:3093–3102

    Article  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  Google Scholar 

  • Van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  CAS  Google Scholar 

  • van Hylckama Vlieg JET, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102

    Article  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542

    Article  CAS  Google Scholar 

  • Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS et al (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:1616–1628

    CAS  Google Scholar 

  • Whyte LG, Bourbonniere L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Bioremed J 3:69–79

    Article  CAS  Google Scholar 

  • Whyte LG, Schultz A, Van Beilen JB, Luz AP, Pellizari V, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–243

    CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Yoon S (2010) Towards practical application of methanotrophic metabolism in chlorinated hydrocarbon degradation, greenhouse gas removal, and immobilization of heavy metals. Ph.D. Dissertation, University of Michigan, 159 p; AAT 3429318

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant and Soil 249:139–156

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from UGC-BSR Project, New Delhi, Govt. of India and BBAU, Lucknow is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Shankar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, J.S., Singh, D.P. (2017). Methanotrophs: An Emerging Bioremediation Tool with Unique Broad Spectrum Methane Monooxygenase (MMO) Enzyme. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_1

Download citation

Publish with us

Policies and ethics