Skip to main content

Actinobacteria in Agricultural and Environmental Sustainability

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

The advent of green revolution or high input agrotechnologies have led to self-reliance in food production. Modern agriculture methods are getting increasingly dependent on the steady supply of synthetic inorganic fertilizers and pesticides, which are products of fossil fuels. There is an increasing concern about the excessive dependence on the supply of chemical fertilizers and pesticides, and the adverse effects of the indiscriminate use of synthetic inputs in soil productivity and environmental quality. The cumulative effect of environmental degradation due to application of agrochemicals has led to a decline in food production during the last two decades. In order to overcome these adverse effects, there is an urgent need to develop new strategies for ensuring further growth in agricultural output. By adapting a strategy involving integrated supply of nutrients from a combination of chemical fertilizers and pesticides, organic manures, and biofertilizers and biopesticides, the soil can be saved from further impoverishment and environmental degradation. The use of microbes as bioinoculants for promoting plant growth and/or bioremediation purposes gives a new dimension to agricultural and environmental biotechnology. Actinobacteria are considered as the most prominent source of bioactive compounds (antibiotics, enzymes, and plant growth modulators) facilitating plant growth promotion and plant disease suppression. Attempts are being made to utilize actinobacteria that produce antibiotics and agro-active compounds as biofertilizers and biopesticides; these aids in mitigating the use of harmful chemical fertilizers and pesticides. Besides making agriculture systems sustainable, soil inhabiting actinobacteria play important roles in various ecological processes such as organic matter decomposition and toxic pollutant and heavy metal bioremediation, thus contributing to the restoration of soil fertility and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Article  Google Scholar 

  • Abou-Dobara MI, Omar NF (2014) Poly R decolorization and APPL production by Streptomyces violaceoruber and Streptomyces spiroverticillatus. Braz J Microbiol 45:1179–1186

    Article  CAS  Google Scholar 

  • Abraham J, Shanker A, Silambarasan S (2013) Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol. Lett Appl Microbiol 57:510–516

    Article  CAS  Google Scholar 

  • Akutsu-Shigeno Y, Adachi Y, Yamada C, Toyoshima K, Nomura N, Uchiyama H, Nakajima-Kambe T (2006) Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol 70:422–429

    Article  CAS  Google Scholar 

  • Al-Askar AA, Baka ZA, Rashad YM, Ghoneem KM, Abdulkhair WM, Hafez EE, Shabana YM (2015) Evaluation of Streptomycesgriseorubens E44G for the biocontrol of Fusariumoxysporum f. sp. lycopersici: ultrastructural and cytochemical investigations. Ann Microbiol 65:1815–1824. doi:10.1007/s13213-014-1019-4

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050, ESA Working Paper No. 12–03, Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. Environ Int 34:292–308

    Article  CAS  Google Scholar 

  • Apajalahti JHA, Karpanoja P, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

    Article  CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1984) Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb Ecol 10:359–367

    Article  CAS  Google Scholar 

  • Aparicio JD, Sola MZS, Benimeli CS, Amoroso MJ, Polti MA (2015) Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane. Ecotoxicol Environ Saf 116:34–39

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: DK M (ed) Plant growth and health promoting bacteria, Microbiology monographs, vol 18. Springer, Berlin

    Chapter  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Ascencion LC, Liang WJ, Yen TB (2015) Control of Rhizoctonia solani damping-off disease after soil amendment with dry tissues of Brassica results from increase in actinomycetes population. Biol Control 82:21–30

    Article  Google Scholar 

  • Atlas R (1997) Principles of microbiology. WCB McGrill-Hill, New York

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  Google Scholar 

  • Ball AS, Betts WB, McCarthy AJ (1989) Degradation of lignin related compounds by actinomycetes. Appl Environ Microbiol 55:1642–1644

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Barker AV (1997) Composition and uses of compost. ACS Symp Ser 668:140–162

    Article  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeter Biodegr 59:148–155

    Article  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  Google Scholar 

  • Bernat P, Dlugonski J (2009) Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. J Hazard Mater 171:660–664

    Article  CAS  Google Scholar 

  • Berndt H, Lowe DJ, Yates MG (1978) The nitrogen-fixing system of Corynebacterium autotrophicum. Purification and properties of the nitrogenase components and two ferredoxins. Eur J Biochem 86:133–142

    Article  CAS  Google Scholar 

  • Bhardwaj S, Bhattacharya S, Das A (2012) Phosphate solubilizing activity of a mangrove isolate of Streptomyces badius from Muthupettai Mangrove, Tamil Nadu, India. J Chem Biol Phys Sci 2:868–876

    CAS  Google Scholar 

  • Bjorklof K, Karlsson S, Frostegard A, Jorgensen KS (2009) Presence of actinobacterial and fungal communities in clean and petroleum hydrocarbon contaminated subsurface soil. Open Microbiol J 3:75–86

    Article  CAS  Google Scholar 

  • Borzenkov IA, Milekhina EI, Gotoeva MT, Rozanova EP, Belyaev SS (2006) The properties of hydrocarbon-oxidizing bacteria isolated from the oil fields of Tatarstan, Western Siberia, and Vietnam. Microbiology 75:66–72

    Article  CAS  Google Scholar 

  • Brana AF, Fiedler HP, Nava H, Gonzalez V, Sarmiento-Vizcaino A, Molina A, Acuna JL, Garcia LA, Blanco G (2015) Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb Ecol 69:512–524

    Article  CAS  Google Scholar 

  • Bretschger L (2013) Population growth and natural-resource scarcity: Long-run development under seemingly unfavorable conditions. Scand J Econ 115:722–755

    Article  Google Scholar 

  • Briceno G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeter Biodegr 73:1–7

    Article  CAS  Google Scholar 

  • Briceno G, Fuentes MS, Rubilar O, Jorquera M, Tortella G, Palma G, Amoroso MJ, Diez MC (2015) Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J Basic Microbiol 55:293–302

    Article  CAS  Google Scholar 

  • Brito EMS, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  CAS  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  CAS  Google Scholar 

  • Byss M, Elhottova D, Tliska J, Baldrian P (2008) Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere 73:1518–1523

    Article  CAS  Google Scholar 

  • Cacciari I, Lippi D, Bordeleau LM (1979) Effect of oxygen on batch and continuous cultures of a nitrogen-fixing Arthrobacter sp. Can J Microbiol 25:746–751

    Article  CAS  Google Scholar 

  • Carpenter-Boggs L, Loynacgan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    Article  CAS  Google Scholar 

  • Carrano CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G (2001) Heterobactins: a new class of siderophores from Rhodococcuserythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 14:119–125

    Article  CAS  Google Scholar 

  • Carro L, Sproer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  Google Scholar 

  • Carson R (1962) Silent Spring. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Castillo MA, Felis N, Aragon P, Cuesta G, Sabater C (2006) Biodegradation of the herbicide diuron by Streptomycetes isolated from soil. Int Biodeter Biodegr 58:196–202

    Article  CAS  Google Scholar 

  • Chacko CI, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation by microbes. Science 154:893–895

    Article  CAS  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    Article  CAS  Google Scholar 

  • Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483

    Article  CAS  Google Scholar 

  • Chengalroyen MD, Dabbs ER (2013) Identification of a gene responsible for amido black decolorization isolated from Amycolatopsis orientalis. World J Microbiol Biotechnol 29:625–633

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int J Environ Sci 4:841–858

    Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2009) Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation. Afr J Biotechnol 8:2535–2540

    CAS  Google Scholar 

  • Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380

    Article  CAS  Google Scholar 

  • Colin VL, Villegas LB, Abate CM (2012) Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int Biodeter Biodegr 69:28–37

    Article  CAS  Google Scholar 

  • Cuozzo SA, Fuentes MS, Bourguignon N, Benimeli CS, Amoroso MJ (2012) Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. Int Biodeter Biodegr 66:19–24

    Article  CAS  Google Scholar 

  • Das P, Banerjee P, Zaman A, Bhattacharya P (2016) Biodegradation of two Azo dyes using Dietzia sp. PD1: process optimization using response surface methodology and artificial neural network. Desalin Water Treat 57:7293–7301. doi:10.1080/19443994.2015.1013993

    Article  CAS  Google Scholar 

  • Daubaras D, Chakrabarty AM (1992) The environment, microbes and bioremediation: microbial activities modulated by the environment. Biodegradation 3:125–135

    Article  Google Scholar 

  • Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  CAS  Google Scholar 

  • Delvasto P, Valverde A, Ballester A, Igual JM, Munoz JA, Gonzalez F, Blazquez ML, Garcia C (2006) Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol Biochem 38:2645–2654

    Article  CAS  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  Google Scholar 

  • Dhanasekaran D, Ambika K, Thajuddin N, Panneerselvam A (2012) Allelopathic effect of actinobacterial isolates against selected weeds. Arch Phytopathology Plant Protect 45:505–521

    Article  CAS  Google Scholar 

  • Dhanasekaran D, Thajuddin N, Panneerselvam A (2010) Herbicidal agents from actinomycetes against selected crop plants and weeds. Nat Prod Res 24:521–529

    Article  CAS  Google Scholar 

  • Donahue RL, Milller RW, Shickluna JC (1990) In: Soils: an introduction to soils and plant growth. Prentice Hall, Upper Saddle River, NJ, p 667

    Google Scholar 

  • Dorman DC, Beasley VR (1991) Neurotoxicity of pyrethrin and pyrethroid insecticides. Vet Hum Toxicol 33:238–243

    CAS  Google Scholar 

  • Edgehill RU (1994) Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790. Appl Microbiol Biotechnol 41:142–148

    Article  CAS  Google Scholar 

  • Eissa FI, Mahmoud HA, Massoud ON, Ghanem KM, Gomaa IM (2014) Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater. J Am Sci 10:98–108

    Google Scholar 

  • El Baz S, Baz M, Barakate M, Hassani L, El Gharmali A, Imziln B (2015) Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci World J 2015:1–14. doi:10.1155/2015/761834

    Article  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • El-khawaga MA, Megahed MMM (2012) Antibacterial and insecticidal activity of actinomycetes isolated from sandy soil of (Cairo-Egypt). Egypt Acad J Biol Sci 4:53–67

    Google Scholar 

  • El-Sayed AHMM, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeter Biodegr 37:69–79

    Article  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1- carboxylic acid deaminase-producing Streptomycete actinomycetes. Plant and Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K, Hussein AM, Kurtboke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythiumcloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507

    Article  Google Scholar 

  • Ensign JC (1992) Introduction to the Actinomycetes. In: Balows A, Truper HG, Dworkin M, Hardeer W, Schleifer KH (eds) The prokaryotes, vol 2, 2 edn. Springer, New York, pp 811–815

    Google Scholar 

  • EPA (1987) Final determination and indent to cancel and deny applications for registrations of pesticide products containing pentachlorophenol (including but not limited to its salts and esters) for non-wood uses. US Environmental Protection Agency. Fed Regist 52:2282–2293

    Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509

    Article  CAS  Google Scholar 

  • Esposito E, Paulillo SM, Manfio GP (1998) Biodegradaticin of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548

    Article  CAS  Google Scholar 

  • Fadullon FS, Karns JS, Torrents A (1998) Degradation of atrazine in soil by Streptomyces. J Environ Sci Health B 33:37–49

    Article  CAS  Google Scholar 

  • Faheem M, Raza W, Zhong W, Nan Z, Shen Q, Xu Y (2015) Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol Cont 81:101–110

    Article  Google Scholar 

  • Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zha T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 470–471:983–992

    Article  CAS  Google Scholar 

  • Farhat MB, Boukhris I, Chouayekh H (2015) Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiol Lett 362. doi:10.1093/femsle/fnv008

  • Fedorov MV, Kalininskaya TA (1961) A new species of nitrogen fixing Mycobacterium and its physiological properties. Mikrobiologiya 30:7–11

    Google Scholar 

  • Ferguson JA, Korte F (1981) Epoxidation of aldrin to exo-dieldrin by soil bacteria. Appl Environ Microbiol 34:7–15

    Google Scholar 

  • Fernandez C, Novo VR (1988) Vida Microbiana en el Suelo. Universidad de La Habana, p 525

    Google Scholar 

  • Fernandez FG, Schaefer D (2012) Assessment of soil phosphorus and potassium following real time kinematic-guided broadcast and deep-band placement in Strip-Till and No-Till. Soil Sci Soc Am J 76:1090–1099

    Article  CAS  Google Scholar 

  • Filnow AB, Lockwood JL (1985) Evaluation of several actinomycetes and the fungus Hypochytrium catenoides as biocontrol agents of Phytophthora root rot of soybean. Plant Dis 69:1033–1036

    Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram-positive side of plant microbe interactions. Environ Microbiol 12:1–12

    Article  CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Frkova Z, Badawi N, Johansen A, Schultz-Jensen N, Bester K, Sorensen SR, Karlson UG (2014) Degradation of three benzonitrile herbicides by Aminobacter MSH1 versus soil microbial communities: pathways and kinetics. Pest Manag Sci 70:1291–1298

    Article  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeter Biodegr 64:434–441

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  Google Scholar 

  • Gadkari D, Schricker K, Acker G, Kroppenstedt RM, Meyer O (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithoautotroph. Appl Environ Microbiol 56:3727–3734

    CAS  Google Scholar 

  • Gangoiti J, Santos M, Prieto MA, de la Mata I, Serra JL, Llama MJ (2012) Characterization of a novel subgroup of extracellular medium-chain-length polyhydroxyalkanoate depolymerases from actinobacteria. Appl Environ Microbiol 78:7229–7237

    Article  CAS  Google Scholar 

  • Gerber NN (1969) A volatile metabolite of actinomycetes, 2-methyliso borneol. J Antibiot 22:508–509

    Article  CAS  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    CAS  Google Scholar 

  • Ghai R, McMahon KD, Rodriguez-Valera F (2012) Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep 4:29–35

    Article  CAS  Google Scholar 

  • Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3:1–8

    Article  Google Scholar 

  • Giovanella P, Costa AP, Schaffer N, Peralba MCR, Camargo FAO, Bento FM (2015) Detoxification of mercury by bacteria using crude glycerol from biodiesel as a carbon source. Water Air Soil Pollut 226:224. doi:10.1007/s11270-015-2480-9

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  Google Scholar 

  • Goldstein AH (1996) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Golovleva LA, Pertsova RN, Evtushenko LI, Baskunov BP (1990) Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation 1:263–271

    Article  CAS  Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1992) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

    Article  CAS  Google Scholar 

  • Goodfellow M, Williams S (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuriaturfanensis 2 M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9:566–576

    Article  CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of by Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347

    Article  CAS  Google Scholar 

  • Grahovac MS, Balaz JS, Grahovac JA, Dodic JM, Tanovic RB, Hrustic JG, Tadijan IZ (2014) Screening of antagonistic activity of selected microorganisms against apple rot pathogens. Rom Biotechnol Lett 19:8959–8965

    Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metalcontaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gunner HB, Zuckerman BM (1968) Degradation of ‘diazinon’ by synergistic microbial action. Nature 217:1183–1184

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83–93

    Article  CAS  Google Scholar 

  • Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-pdioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67:3610–3617

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42:157–171

    Article  CAS  Google Scholar 

  • Hanne LF, Kirk LL, Appel SM, Narayan AD, Bains KK (1993) Degradation and induction specificity in actinomycetes that degrade p-Nitrophenol. Appl Environ Microbiol 59:3505–3508

    CAS  Google Scholar 

  • Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2007) Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 22:412–415

    Article  Google Scholar 

  • Hassall KA (1990) Organophosphorus insecticides In: The biochemistry and uses of pesticides. Structure, metabolism, mode of action and uses in crop protection, 2 edn. MacMillan, NewYork, p. 536

    Google Scholar 

  • Hastuti RD, Lestari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. As biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). Hayati J Biosci 19:155–162

    Article  Google Scholar 

  • Hema TG, Getha K, Tan GYA, Sahira HL, Syamil AM, Fairuz MYN (2014) Actinobacteria isolates from tin tailings and forest soil for bioremediation of heavy metals. J Trop For Sci 26:153–162

    Google Scholar 

  • Heng JLS, Shah UKM, Rahman NAA, Shaari K, Hamzah H (2015) Streptomyces ambofaciens S2—a potential biological control agent for colletotrichumgleosporioides the causal agent for anthracnose in red chilli fruits. J Plant Pathol Microbiol S1:006. doi:10.4172/2157-7471.S1-006

    Google Scholar 

  • Herdt RW (1998) Assisting developing countries toward food self-reliance. Proc Natl Acad Sci 95:1989–1992

    Article  CAS  Google Scholar 

  • Hirano T, Ishida T, Oh K, Sudo R (2007) Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere 67:428–434

    Article  CAS  Google Scholar 

  • Horvath RS (1971) Microbial cometabolism of 2,4,5-trichlorophenoxyacetic acid. Bull Environ Contam Toxicol 5:53

    Google Scholar 

  • http://www.biotecharticles.com/Environmental-Biotechnology-Article/Actinomycetes-and-Bioremediation-1091.html

  • http://www.epa.gov/waterscience/methods/pollutants.htm

  • Idemudia MI, Nosagie OA, Omorede O (2014) Comparative assessment of degradation potentials of bacteria and actinomycetes in soil contaminated with motorcycle spent oil. Asian J Sci Tech 5:482–487

    Google Scholar 

  • Imbert M, Bechet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Iwai S, Yamazoe A, Takahashi R, Kurisu F, Yagi O (2005) Degradation of monochlorinated dibeno -p-Dioxins by Janibacter sp. strain YA isolated from river sediment. Curr Microbiol 51:353–358

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y (2003) Poly (L-lactide) degradation by Saccharothrix waywayandensis. Biotechnol Lett 25:401–404

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2003) Poly (L-lactide) degradation by Kibdelosporangiumaridum. Biotechnol Lett 25:2035–2038

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2006) Production of poly(L-lactide)-degrading enzyme by Amycolatopsis orientalis for biological recycling of poly(L-lactide). Appl Microbiol Biotechnol 72:726–731

    Article  CAS  Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agri Sci 3:73–84

    Google Scholar 

  • Jin X, Liu G, Xu Z, Tao W (2007) Decolourisation of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243

    Article  CAS  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium tj-1 for the decolourization of structurally different azo dyes. Biores Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Kao CM, Chai CT, Liu JK, Yeh TY, Chen KF, Chen SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672

    Article  CAS  Google Scholar 

  • Kapustka LA, Reporter M (1993) Terrestrial primary producers. In: Calow P (ed) Handbook of ecotoxicology, vol 1. Blackwell Scientific Publications, Oxford, pp 278–298

    Google Scholar 

  • Karelova E, Harichova J, Stojnev T, Pangallo D, Ferianc P (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal contaminated site. Biologia 1:18–26

    Google Scholar 

  • Karn SK, Chakrabati SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69

    Article  CAS  Google Scholar 

  • Karthik L, Kumar G, Rao KVB (2013) Antioxidant activity of newly discovered lineage of marine actinobacteria. Asian Pac J Trop Med 6:325–332

    Article  CAS  Google Scholar 

  • Katsuda Y (1999) Development of and future prospects for pyrethroid chemistry. Pestic Sci 55:775–782

    Article  CAS  Google Scholar 

  • Kaufman DD (1964) Microbial degradation of 2,2-dichloropropionic acid in five soils. Can J Microbiol 10:843–852

    Article  CAS  Google Scholar 

  • Kaur T, Vasudev A, Sohal SK, Manhas RK (2014) Insecticidal and growth inhibitory potential of Streptomyceshydrogenans DH16 on major pest of India, Spodopteralitura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol 14:1–9

    Article  CAS  Google Scholar 

  • Kay MJ, Morton LHG, Prince EL (1991) Bacterial degradation of polyester polyurethane. Int Biodeter Biodegrad 27:205–222

    Article  CAS  Google Scholar 

  • Kertesz M, Elgorriaga A, Amrhein N (1991) Evidence for two distinct phosphonate degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation 2:53–59

    Article  CAS  Google Scholar 

  • Khessairi A, Fhoula I, Jaouani A, Turki Y, Cherif A, Boudabous A, Hassen A, Ouzari HI (2014) Pentachlorophenol degradation by Janibacter sp., a new actinobacterium isolated from saline sediment of Arid Land. Biomed Res Int 2014:1–9

    Article  CAS  Google Scholar 

  • Kimura N, Urushigawa Y (2001) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a gram-positive bacterium, Rhodococcus opacus SAO 101. J Biosci Bioeng 92:138–143

    Article  CAS  Google Scholar 

  • Kozyreva LP, Golovleva LA (1993) Growth of Nocardioides simplex on a mixture of 2,4,5-T and 2,4-D herbicides. Microbiology 62:136–138

    Google Scholar 

  • Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M (2008) Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 19:749–757

    Article  CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2006) Biodegradation of p-nitrophenol by P. putida. Biores Technol 97:982–988

    Article  CAS  Google Scholar 

  • Kummer C, Shumann P, Stackebrandt E (1996) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol 49:513–1522

    Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomycesalbiaxialissp. nov.: a new petroleum hydrocarbon-degrading species of thermo-and halotolerant Streptomyces. Microbiology 61:62–67

    Google Scholar 

  • Laffin B, Chavez M, Pine M (2010) The pyrethroid metabolites 3- phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague-Dawley rats. Toxicology 267:39–44

    Article  CAS  Google Scholar 

  • Latha S, Vinothini G, Dhanasekaran D (2015) Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22. 3 Biotech 5:423–432

    Article  Google Scholar 

  • Latour X, Barbey C, Chane A, Groboillot A, Burini JF (2013) Rhodococcus erythropolis and its γ-Lactone catabolic pathway: An unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy 3:816–838

    Article  CAS  Google Scholar 

  • Lazo WR, Klein RM (1965) Some physical factors involved in actinolichen formation. Mycologia 57:804–808

    Article  Google Scholar 

  • le Roes-Hill M, Khan N, Burton SG (2011) Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol 164:681–713

    Article  CAS  Google Scholar 

  • Li G, Peng L, Ding Z, Liu Y, Gu Z, Zhang L, Shi G (2014a) Decolorization and biodegradation of triphenylmethane dyes by a novel Rhodococcus qingshengii JB301 isolated from sawdust. Ann Microbiol 64:1575–1586

    Article  CAS  Google Scholar 

  • Li X, Huang P, Wang Q, Xiao L, Liu M, Bolla K, Zhang B, Zheng L, Gan B, Liu X, Zhang L, Zhang X (2014b) Staurosporine from the endophytic Streptomyces sp. strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber. Antonie Van Leeuwenhoek 106:515–525

    Article  Google Scholar 

  • Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849–1861

    Article  CAS  Google Scholar 

  • Lin QS, Chen SH, Hu MY, Haq MRU, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8:45–56

    Article  CAS  Google Scholar 

  • Liu SY, Liu MH, Bollag JM (1990) Transformation of metolachlor in soil inoculated with Streptomyces sp. Biodegradation 1:9–17

    Article  Google Scholar 

  • Loos MA, Bollag JM, Alexander M (1967) Phenoxyacetate herbicide detoxication by bacterial enzymes. J Agric Food Chem 15:858–860

    Article  CAS  Google Scholar 

  • Lovley DR, Coatest JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Lu L, Zeng G, Fan C, Ren X, Wang C, Zhao Q, Zhang J, Chen M, Chen A, Jiang M (2013) Characterization of a laccase-like multicopper oxidase from newly isolated Streptomyces sp. C1 in agricultural waste compost and enzymatic decolorization of azo dyes. Biochem Eng J 72:70–76

    Article  CAS  Google Scholar 

  • Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 2003(6):251–260

    Article  CAS  Google Scholar 

  • Macagnan D, Romeiro RS, deSouza JT, Pomella AWV (2006) Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 34:122–132

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Saravanan VS, Santhanakrishnan P (2010b) Microbacterium azadirachtae sp. nov., a plant growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60:1687–1692

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC, Sundaram S (2010a) Leifsoniasoli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60:1322–1327

    Article  CAS  Google Scholar 

  • Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeter Biodegr 84:185–191

    Article  CAS  Google Scholar 

  • Martens R (1976) Degradation of [8,9-14C]endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858

    CAS  Google Scholar 

  • Mba CC (1997) Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol Biochem 29:381–385

    Article  CAS  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280

    Article  CAS  Google Scholar 

  • Mitchell R, Hurwitz R (1965) Suppression of Pythium deharyanum by lytic rhizosphere bacteria. Phytopathology 55:156–158

    Google Scholar 

  • Mohamed SH, El-Helafiy SS, Ismail Mona A, Sadik AS (2013) Streptomyces noboritoensis isolated from rhizosphere soil and its use in controlling banana-tissue culture contaminants. Afr J Biotechnol 12:2908–2913

    CAS  Google Scholar 

  • Mohandas S, Poovarasan S, Panneerselvam P, Saritha B, Upreti KK, Kamal R, Sita T (2013) Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes. Sci Hortic 150:371–376

    Article  CAS  Google Scholar 

  • Mukai A, Komaki H, Takagi M, Shin-ya KJ (2009) Novel siderophore, JBIR-16, isolated from Nocardia tenerifensis NBRC 101015. J Antibiot 62:601–603

    Article  CAS  Google Scholar 

  • Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartmann A (2014) Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26

    Article  CAS  Google Scholar 

  • Naveena B, Annalakshmi G, Partha N (2013) An efficacious degradation of pesticide by salt tolerant Streptomyces venezuelae ACT 1. Biores Technol 132:378–382

    Article  CAS  Google Scholar 

  • Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol Biochem 14:219–222

    Article  CAS  Google Scholar 

  • Nielsen MB, Kjeldsen KU, Ingvorsen K (2011) Description of Citricoccusnitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002. Antonie Van Leeuwenhoek 99:489–499

    Article  Google Scholar 

  • Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomycespsammoticus and its application in dye decolourization. Biores Technol 99:4583–4589

    Article  CAS  Google Scholar 

  • Ningthoujam DS, Sanasam S, Mutum A (2012) Characterization of p-nitrophenol degrading actinomycetes from Hundung limestone deposits in Manipur, India. Afr J Biotechnol 11:10210–10220

    CAS  Google Scholar 

  • Ntalli NG, Menkissoglu-Spiroudi U (2011) Pesticides of botanical origin: a promising tool in plant protection. In: Stoytcheva M (ed) Pesticides-formulations, effects, fate. Intech, Rijeka, Croatia, pp 1–23

    Google Scholar 

  • Olaganathan R, Patterson J (2013) Effect of anthraquinone dyes on the carbohydrate, protein and lipid content in the muscle of Channa punctatus and Cyprinus carpio. Int J Pharm Appl 4:11–18

    CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Yang SH, Suh JW (2013a) Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J Appl Microbiol 115:207–217

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013b) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  Google Scholar 

  • PAN (2008) The pesticide action network (PAN) pesticide database: www.pesticideinfo.org

  • Pangallo D, Buckova M, Krakova L, Puskarova A, Sakova N, Grivalsky T, Chovanova K, Zemankova M (2015) Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches. Environ Microbiol 17:462–479

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2006) Biosorption process for treatment of electroplating wastewater containing Cr(VI): Laboratory-scale feasibility test. Ind Eng Chem Res 45:5059–5065

    Article  CAS  Google Scholar 

  • Pasti MB, Crawford DL (1991) Relationships between the abilities of streptomycetes to decolorize three anthron-type dyes and to degrade lignocellulose. Can J Microbiol 37:902–907

    Article  CAS  Google Scholar 

  • Pasti-Grigsby MB, Burke NS, Goszczynski S, Crawford DL (1996) Transformation of azo dye isomers by Streptomyces chromofuscus A11. Appl Environ Microbiol 62:1814–1817

    CAS  Google Scholar 

  • Pavic A, Stankovic S, Saljnikov E, Kruger D, Buscot F, Tarkka M, Marjanovic Z (2013) Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecol 6:527–538

    Article  Google Scholar 

  • Pearce F (1997) Sheep dips poison river life. New Sci 153:4

    Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064

    Article  CAS  Google Scholar 

  • Pillai HPJS, Girish K, Agsar D (2014) Isolation, characterization and screening of actinomycetes from textile industry effluent for dye degradation. Int J Curr Microbiol App Sci 3:105–115

    CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Pingali PL (2012) Green revolution: Impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308

    Article  CAS  Google Scholar 

  • Pipke R, Amrhein N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54:1293–1296

    CAS  Google Scholar 

  • Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem 165:267–273

    Article  CAS  Google Scholar 

  • Pizzul L, del Pilar CM, Stenstrom J (2006) Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol 22:745–752

    Article  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris–Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Poovarasan S, Mohandas S, Paneerselvam P, Saritha B, Ajay KM (2013) Mycorrhizae colonizing actinomycetes promote plant growth and control bacterial blight disease of pomegranate (Punica granatum L. cv Bhagwa). Crop Prot 53:175–181

    Article  Google Scholar 

  • Pravin D, Sandip B, Shreyash B, Anjana G (2012) Degradation of organophosphate and organochlorine pesticides in liquid culture by marine isolate Nocardiopsis species and its bioprospectives. J Environ Res Dev 7:995–1001

    Google Scholar 

  • Priyadharsini P, Dhanasekaran D (2015) Diversity of soil allelopathic actinobacteria in Tiruchirappalli district, Tamilnadu, India. J Saudi Soc Agric Sci 14:54–60

    Google Scholar 

  • Rai H, Bhattacharya M, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Raja A, Prabakarana P (2011) Actinomycetes and drug-An overview. Am J Drug Discov Dev 1:75–84

    Article  Google Scholar 

  • Ratna D, Padhi BS (2012) Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. Int J Environ Sci 3:941–955

    Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillustubingensis and Aspergillusniger. Biores Technol 84:187–189

    Article  CAS  Google Scholar 

  • Rehan M, Kluge M, Franzle S, Kellner H, Ullrich R, Hofrichter M (2014) Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 98:6125–6135

    Article  CAS  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633

    Article  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  Google Scholar 

  • Rizwana PS, Palempalle UMD (2015) Decolourisation and detoxification of reactive azo dyes by Saccharothrix Aerocolonigenes TE5. J Appl Environ Microbiol 3:58–62

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol 5:1–3

    Article  Google Scholar 

  • Ruppel S (1989) Isolation and characterization of dinitrogen fixing bacteria from the rhizosphere of Triticum aestivum and Ammophila arenaria. In: Vancura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil. Proceedings of an international symposium. Liblice, Prague, pp 253–262

    Google Scholar 

  • Sabarathnam B, Manilal A, Sujith S, Kiran GS, Selvin J, Thomas A, Ravji R (2010) Role of sponge associated actinomycetes in the marine phosphorous biogeochemical cycles. Am Eurasian J Agric Environ Sci 8:253–256

    CAS  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  Google Scholar 

  • Sajitha KL, Florence EJM (2013) Effects of Streptomyces sp. on growth of rubberwood sap stain fungus Lasiodiplodla theobromae. J Trop For Sci 25:393–399

    Google Scholar 

  • Salla TD, da Silva TR, Astarita LV, Santarem ER (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem 85:14–20

    Article  CAS  Google Scholar 

  • Santos M, Gangoiti J, Keul H, Moller M, Serra JL, Llama MJ (2013) Polyester hydrolytic and synthetic activity catalyzed by the medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces venezuelae SO1. Appl Microbiol Biotechnol 97:211–222

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Ecofriendly decolorization and degradation of reactive green 19A using Micrococcusglutamicus NCIM-2168. Biores Technol 110:3897–3905

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem E 42:138–157

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler H-P, Hampp R, Tarkka MT (2012) Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiol 12:164

    Article  CAS  Google Scholar 

  • Schwencke J, Caru M (2001) Advances in actinorhizal symbiosis: host plant- Frankia interactions, biology, and applications in arid land reclamation: a review. Arid Land Res Manag 15:285–327

    Article  CAS  Google Scholar 

  • Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342:179–186

    Article  CAS  Google Scholar 

  • Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) (2015) Citricoccuszhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J Microbiol Biotechnol 31:833–839

    Article  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A (2010) Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a newly isolated Actinomadura sp. AF-555, from soil. Int Biodeter Biodegr 64:281–285

    Article  CAS  Google Scholar 

  • Shekhar SK, Godheja J, Modi DR, Peter JK (2014) Growth potential assessment of actinomycetes isolated from petroleum contaminated soil. J Bioremed Biodegr 5:1–8

    Article  CAS  Google Scholar 

  • Shelton DR, Khader S, Karns JS, Pogell BM (1996) Metabolism of twelve herbicides by Streptomyces. Biodegradation 7:129–136

    Article  CAS  Google Scholar 

  • Shen DS, Liu XW, Feng HJ (2005) Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor. J Hazard Mater 119:239–243

    Article  CAS  Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  Google Scholar 

  • Shigaki F, Sharpley AN, Prochnow LI (2006) Animal-based agriculture, phosphorus and management and water quality in Brazil: options for the future. Sci Agric 63:194–209

    Article  CAS  Google Scholar 

  • Shivlata L, Satyanarayana T (2015) Thermophilic and alkaliphilic actinobacteria: biology and potential applications. Front Microbiol 6:1014. doi:10.3389/fmicb. 2015

    Article  CAS  Google Scholar 

  • Sierra I, Valera JL, Marina ML, Laborda F (2003) Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere 53:609–618

    Article  CAS  Google Scholar 

  • Silva LJ, Crevelin EJ, Souza WR, Moraes LAB, Melo IS, Zucchi TD (2014) Streptomyces araujoniae produces a multiantibiotic complex with ionophoric properties to control Botrytis cinerea. Phytopathology 104:1298–1305

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Singh MJ, Sedhuraman P (2015) Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves. Bioresour Bioprocess 2:1–7. doi:10.1186/s40643-014-0034-4

    Article  Google Scholar 

  • Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49:378–383

    Article  CAS  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa–Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Speedie MK, Pogell BM, MacDonald MJ, Kline R, Huang YI (1987) Potential usefulness of Streptomyces for the detoxification of recalcitrant organochlorines and other pollutants. Actinomycet 20:315–335

    Google Scholar 

  • Srivastava S, Patel JS, Singh HB, Sinha A, Sarma BK (2014) Streptomyces rochei SM3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. J Phytopathol 163:583–592

    Article  CAS  Google Scholar 

  • Srividya S, Thapa A, Bhat DV, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soil-borne fungal phytopathogens. Eur J Exp Biol 2:163–173

    CAS  Google Scholar 

  • Steger K, Jarvis A, Vasara T, Romantschuk M, Sundh I (2007) Effects of differing temperature management on development of Actinobacteria populations during composting. Res Microbiol 158:617–624

    Article  CAS  Google Scholar 

  • Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  CAS  Google Scholar 

  • Steinrucken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  CAS  Google Scholar 

  • Sugimori D, Dake T, Nakamura S (2000) Microbial degradation of disodium terephthalate by alkaliphilic Dietzia sp. strain GS-1. Biosci Biochem 6:2709–2711

    Article  Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695

    Article  CAS  Google Scholar 

  • Tekaya SB, Tipayno S, Chandrasekaran M, Yim W, Sa T (2012) Actinobacteria isolation from metal contaminated soils for assessment of their metal resistance and plant growth promoting (PGP) characteristics. Korean J Soil Sci Fert 45:593–601

    Article  Google Scholar 

  • Thiagarajan V, Revathi R, Aparanjini K, Sivamani P, Girilal M, Priya CS, Kalaichelvan PT (2011) Extracellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int J Curr Sci 1:30–44

    Google Scholar 

  • Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168

    Article  CAS  Google Scholar 

  • Toth E (1996) The species composition of oligotrophic bacterial communities of Lake Balaton--a numerical analysis. Acta Microbiol Immunol Hung 43:333–338

    CAS  Google Scholar 

  • Toyota K, Watanabe T (2013) Recent trends in microbial inoculants in agriculture. Microbes Environ 28:403–404

    Article  Google Scholar 

  • Valdes M, Perez NO, Estrada-de Los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  CAS  Google Scholar 

  • Valencia-Cantero E, Hernandez-Calderon E, Velazquez-Becerra C, Lopez-Meza JE, Alfaro-Cuevas R, Lopez-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant and Soil 291:263–273

    Article  CAS  Google Scholar 

  • Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–328

    Article  CAS  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of Raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  CAS  Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  Google Scholar 

  • Verghese S, Misra AK (2002) Frankia–actinorhizal symbiosis with special reference to host–microsymbiont relationship. Curr Sci 83:404–408

    Google Scholar 

  • Verma M, Lal D, Kaur J, Saxena A, Kaur J, Anand S, Lal R (2013) Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Res Microbiol 164:718–728

    Article  CAS  Google Scholar 

  • Vijayabharathi R, Kumari BR, Sathya A, Srinivas V, Abhishek R, Sharma HC, Gopalakrishnan S (2014) Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Can J Plant Sci 94:759–769

    Article  Google Scholar 

  • Vijayakumar R, Gopika G, Dhanasekaran D, Saravanamuthu R (2012) Isolation, characterisation and antifungal activity of marine actinobacteria from Goa and Kerala, the west coast of India. Arch Pathol Lab Med 45:1010–1025

    CAS  Google Scholar 

  • Vinod K, Jaiprakash C, Thamizhmani R, Raj RV, Lall C, Muruganandam N, Govind GA, Anwesh M, Reesu R, Chander MP (2014) High metal resistance and metal removal properties of antibiotics producing Actinobacteria isolated from rhizosphere region of Casuarina equisetifolia. Int J Curr Microbiol App Sci 3:803–811

    Google Scholar 

  • Wadi JA, Easton GD (1985) Control of Verticillium dahliae by coating potato seed pieces with antagonistic bacteria. In: CA P, AD R, KJ M, PTW W (eds) Ecology and management of soil borne plant pathogens, vol 358. American Phytopathological Society, St. Paul, MN, pp 134–136

    Google Scholar 

  • Wang C, Chen F, Zhang Q, Fang Z (2009) Chronic toxicity and cytotoxicity of synthetic pyrethroid insecticide cis-bifenthrin. J Environ Sci 21:1710–1715

    Article  CAS  Google Scholar 

  • Wang XB, Chi CQ, Nie Y, Tang YQ, Tan Y, Wu G, Wu XL (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Biores Technol 102:7755–7761

    Article  CAS  Google Scholar 

  • Watcharakul S, Umsakul K, Hodgson B, Chumeka W, Tanrattanakul V (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electron J Biotechnol 15:1–10

    Google Scholar 

  • Webb MD, Ewbank G, Perkins J, McCarthy AJ (2001) Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost. Soil Biol Biochem 33:1903–1914

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–144

    Article  CAS  Google Scholar 

  • Wilkins K (1996) Volatile metabolites from actinomycetes. Chemosphere 32:1427–1434

    Article  CAS  Google Scholar 

  • Wittmann C, Zeng AP, Deckwer WD (1998) Physiological characterization and cultivation strategies of the pentachlorophenol- degrading bacteria Sphingomonaschlorophenolica RA2 and Mycobacteriumchlorophenolicum PCP-1. J Ind Microbiol Biotechnol 21:315–321

    Article  CAS  Google Scholar 

  • Wu CY, Chen N, Li H, Li QF (2014) Kocuria rosea HN01, a newly alkaliphilic humus-reducing bacterium isolated from cassava dreg compost. J Soil Sediment 14:423–431

    Article  CAS  Google Scholar 

  • Xu B, Chen W, Wu ZM, Long Y, Li KT (2015) A novel and effective Streptomyces sp. N2 against various phytopathogenic fungi. Appl Biochem Biotechnol 177:1338–1347. doi:10.1007/s12010-015-1818-5

    Article  CAS  Google Scholar 

  • Yamaura M, Uchiumi T, Higashi S, Abe M, Kucho K (2010) Identification of Frankia genes induced under nitrogen-fixing conditions by suppression subtractive hybridization. Appl Environ Microbiol 76:1692–1694

    Article  CAS  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5 MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yoshida N, Inaba S, Takagi H (2014) Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9 T-4. J Biosci Bioeng 117:28–32

    Article  CAS  Google Scholar 

  • Zacharia JT (2011) Ecological effects of pesticides. In: Stoytcheva M (ed) Pesticides in modern worlds—risks and benefits. InTech, Rijeka, Croatia, pp 129–142

    Google Scholar 

  • Zhang C, Jia L, Wang SH, Qu J, Xu LL, Shi HH, Yan YC (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Biores Technol 101:3423–3429

    Article  CAS  Google Scholar 

  • Zhang GY, Ling JY, Sun HB, Luo J, Fan YY, Cui ZJ (2009) Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11. J Hazard Mater 172:580–586

    Article  CAS  Google Scholar 

  • Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–162

    Article  CAS  Google Scholar 

  • Zhuang WQ, Tay JH, Maszenan AM, Krumholz LR, Tay STL (2003) Importance of gram-positive naphthalene-degrading bacteria in oil contaminated tropical marine sediments. Lett Appl Microbiol 36:251–257

    Article  CAS  Google Scholar 

  • Zollinger H (1987) Colour chemistry—synthesis, properties and applications of organic dyes and pigments. VCH, New York, pp. 92–102

    Google Scholar 

  • Zucchi TD, Almeida LG, Moraes LAB, Consoli FL (2014) Albocycline, the main bioactive compound from Propionicimonas sp. ENT-18 against Sclerotinia sclerotiorum. Ind Crop Prod 52:264–268

    Article  CAS  Google Scholar 

  • Zvyagintseva IS, Poglasova MN, Gotoeva MT, Belyaev SS (2001) Effect of the medium salinity on oil degradation by Nocardioform bacteria. Microbiology 70:652–656

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial assistance from the Department of Biotechnology and University Grants Commission, Government of India, New Delhi, while writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulasi Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shivlata, L., Satyanarayana, T. (2017). Actinobacteria in Agricultural and Environmental Sustainability. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_9

Download citation

Publish with us

Policies and ethics