Skip to main content

Bioprospecting of Genes from Microbes for Stress Management in Agricultural Crops

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

At present, agricultural systems are under immense pressure to fulfill the increasing demand of food and feed in the context of global climate change with expanding populations. It is an established fact that the global temperature is likely to increase in upcoming decades resulting in the alteration of the edaphic attributes. The change in the edaphic factors due to climatic variations such as annual rainfall, events of drought and flood results in the decrease in soil fertility with water salinization which ultimately results in the reduction of crop yield. Hence in the contemporary era of scientific advancement, it is of central significance to develop mitigation strategies using analytical and forward looking concepts to fulfill the rapidly increasing food demands with ecological sustainability. In recent years, transgenic technology has proven to be very effective in terms of developing stress tolerant crops and use of microbes. This is a relatively simple alternative in terms of cost, unique properties, and ease of handling for broad-spectrum resistance/tolerance against combination of different stresses. Thus, the emphasis is now shifted to the bioprospecting of microbiota to explore the molecular and biochemical potential of microbes towards stress alleviation in crop plants. This book chapter includes an updated progress in microbial gene prospecting and their contemporary use in different plants to enhance their stress tolerance potential. Moreover, the chapter also emphasizes the different metabolic pathways which were previously targeted towards the development of stress tolerant plants and simultaneously proposed theoretical perspective and a baseline knowledge which could be further harnessed in future research towards sustainable agriculture and ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth-promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  Google Scholar 

  • Alia HH, Chen THH, Murata N (1998a) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21:232–239

    Article  CAS  Google Scholar 

  • Alia HH, Sakamoto A, Murata N (1998b) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  CAS  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR, Patel KK, Rajam MV (2014) Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J 2014:125967

    Article  Google Scholar 

  • Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963

    Article  CAS  Google Scholar 

  • Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 6:41–50

    Article  CAS  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperon confer abiotic stress tolerance in plants and improved grain yield in Maize under water limited conditions. Plant Physiol 147:446–455

    Article  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82

    Article  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  • De La Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  CAS  Google Scholar 

  • Dhankher OP, Shasti NA, Rosen BP, Fuhrmann M, Meagher RB (2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytol 159:431–441

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633

    Article  CAS  Google Scholar 

  • Donnamaria MC, Howard EI, Grigera JR (1994) Interaction of water with a,a-trehalose in solution: molecular dynamics simulation approach. J Chem Soc Faraday Trans 90(18):2731–2735

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium-induce gene in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  CAS  Google Scholar 

  • Fukushima E, Arata Y, Endo T, Sonnewald U, Sato F (2001) Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol 42:245–249

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903

    Article  CAS  Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-Coronado JM, Arrillaga I (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  CAS  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial cod A gene enhances tolerance to salt and water stresses. J Plant Physiol 68(11):1286–1294

    Article  Google Scholar 

  • Gordon LK (1992) Functional characteristics of adaptive senescence of excised wheat roots. Physiol Biochem Cultiv Plants 24:128–133

    Google Scholar 

  • Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T (1993) Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56:479–490

    Article  Google Scholar 

  • Grichko VP, Glick BR (2001) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S ro1D or PRB-1b promoter. Plant Cell Physiol 42:245–249

    Article  Google Scholar 

  • Han SE, Park SR, Kwon HB, Yi BY, Lee GB, Byun MO (2005) Genetic engineering of drought resistant tobacco plants by Introducing the Trehalose Phosphorylase (TP) gene from Pleurotussajor-caju. Plant Cell Tissue Organ Cult 82(2):151–158

    Article  CAS  Google Scholar 

  • Hayashi HA, Sakamoto A, Nonaka H, Chen THH, Murata N (2001) Enhance germination under high salt condition of seeds of transgenic Arabidopsis with a bacterial gene (cod A) for choline oxilase. J Plant Res 111:357–362

    Article  Google Scholar 

  • Haysashi H, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thailiana with coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  CAS  Google Scholar 

  • IPCC (2007) https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf

  • Islam MS, Azam MS, Sharmin S, Sajib AA, Alam MM, Reza MS, Ahmed R, Khan H (2013) Improved salt tolerance of jute plants expressing the katE gene from Escherichia coli. Turk J Biol 37(206):211

    Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SY, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-PHOSPHATE synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151

    Article  CAS  Google Scholar 

  • Lee YRJ, Nagao RT, Key JL (1994) A soyabean 101-KD heat shock protein complements a yeast HSP 104 deletion mutation in acquiring thermotolerance. Plant Cell 6:1889–1897

    Article  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplast confer drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Lilius G, Holmberg N, Bulovv L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:l77–180

    Article  Google Scholar 

  • Liu Y, Wang G, Liu J, Peng X, Xie Y, Dai J, Guo S, Zhang F (1999) Transfer of E. coli gut D gene into maize and regeneration of salt-tolerant transgenic plants. Life Sci 42:90–95

    Article  CAS  Google Scholar 

  • Liu ZH, Zhang HM, Li GL, Guo XL, Chen SY, Liu GB, Zhang YM (2011) Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica 178:363–372

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  Google Scholar 

  • Lv S, Young A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick GR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth promoting bacteria that confer resistance in tomato and pepper to salt stress. Plant Physiol Biochem 167:650–656

    Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherchia coli catalase gene, katE. Plant Biotechnol Rep 1(1):49–55

    Article  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  CAS  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180

    Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  Google Scholar 

  • Peterson GD, Allen CR, Holling CS (1998) Diversity, ecological function, and scale: resilience within and across scales. Ecosystem 1:6–18

    Article  Google Scholar 

  • Pilon-Smits E, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RH, Goddijn OJ (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152(4–5):525–532

    Article  CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499

    Article  CAS  Google Scholar 

  • Prodhan SH, Hossain A, Kenji N, Atsushi K, Hiroko M (2008) Improved salt tolerance and morphological variation in indica rice (Oryza sativa L.) transformed with a catalase gene from E. coli. Plant Tissue Cult Biotechnol 18(1):57–63

    Google Scholar 

  • Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532

    Article  CAS  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  Google Scholar 

  • Romero C, Bellës JM, Vayá JL, Serrano R, Culiáñez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  Google Scholar 

  • Sakamoto A, Valverde R, Alia CTHH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Article  CAS  Google Scholar 

  • Saleem M, Arshad S, Hussain AS, Bhatti S (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbain P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 113:1177–1183

    Article  CAS  Google Scholar 

  • Shikanaia T, Takedab T, Yamauchib H, Sanoa S, Tomizawaa KS, Yokotaa A, Shigeokab S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51

    Article  Google Scholar 

  • Siebert S, Ewert F, Rezaei EE, Kage H, Grab R (2014) Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ Res Lett 9:044012

    Article  Google Scholar 

  • Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100(1):29–30

    CAS  Google Scholar 

  • Singh JS (2013a) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Chang Environ Sustain 1(1):20–24

    Article  Google Scholar 

  • Singh JS (2013b) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Chang Environ Sustain 2:133–137

    Article  Google Scholar 

  • Singh JS (2015a) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS (2015b) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Article  Google Scholar 

  • Singh JS (2015c) Biodiversity: current perspectives. Clim Chang Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2016) Microbes play major roles in ecosystem services. Clim Chang Environ Sustain 3:163–167

    Article  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  CAS  Google Scholar 

  • Singh JS, Singh DP (2012) Reforestation: a potential approach to mitigate the excess CH4 build-up. Ecol Manag Restor 13(3):245–248

    Article  Google Scholar 

  • Singh JS, Singh DP (2013a) Impact of anthropogenic disturbances on methanotrophs abundance in dry tropical forest ecosystems, India. Expert Opin Environ Biol 2:1–3

    Google Scholar 

  • Singh JS, Singh DP (2013b) Plant Growth Promoting Rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Abhilash PC, Gupta VK (2016a) Agriculturally important microbes in sustainable food production. Trend Biotechnol 34:775–773

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouze J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Climate change 2007. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in the seasons: an overview. Int J Clim 22:1715–1725

    Article  Google Scholar 

  • Tarezynski MC, Tensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  Google Scholar 

  • Taweel KA, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacilluspolymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  Google Scholar 

  • Turhan J (2005) Salinity response of transgenic potato genotype expressing the oxalate oxidase gene. Turk J Agric For 29(3):187–195

    CAS  Google Scholar 

  • Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzukim S, Takanom J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102:1318–1323

    Article  CAS  Google Scholar 

  • Walker B, Steffen W (1997) An overview of the implications of global change for natural and managed terrestrial ecosystems. Conerv Ecol 1(2):2

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  Google Scholar 

  • Wang QB, Xu W, Xue QZ, Su W (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci 11:851–861

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamguchi-Shinozaki K, Wada K, Harada Y, Sinozaki K (1995) Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  Google Scholar 

  • Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe KN (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Project Director, NRCPB for providing the infrastructure facilities. Financial support provided by ICAR, New Delhi under NICRA (National Innovative Climate Resilient Agriculture) project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasdeep Chatrath Padaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shekhar, S., Gambhir, G., Padaria, J.C. (2017). Bioprospecting of Genes from Microbes for Stress Management in Agricultural Crops. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_7

Download citation

Publish with us

Policies and ethics