Skip to main content

Atmospheric Carbon Sequestration Through Microalgae: Status, Prospects, and Challenges

  • Chapter
  • First Online:
Book cover Agro-Environmental Sustainability

Abstract

Microalgae are considered to be suitable candidates for atmospheric carbon sequestration by virtue of attributes such as faster growth, ability to grow in low-quality water, and tolerance towards a wider range of temperature, salinity and nutrient-deficient environment. Further, the downstream processing of microalgal biomass yields a variety of value-added products including biodiesel which is considered to be a lucrative alternative to fossil-based fuels. In this review, the potentialities of microalgae for atmospheric carbon sequestration are discussed with reference to present status of microalgae biomass production systems, strategies for enhancing the growth of natural populations of microalgae in marine environment, status of knowledge about downstream processing of biomass for biodiesel production and its implications on global warming mitigation. In concluding part, the prospects and challenges pertaining to microalgal biomass production and its utilization are highlighted. Based on an overview of the state of knowledge, few recommendations are submitted for the consideration of the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acien-Fernandez FG, Fernandez Sevilla JM, Sanchez Perez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • Arjun RK, Lipin D, Thankamani V (2012) An integrated process for industrial effluent treatment and biodiesel production using microalgae. Res Biotechnol 3(1):47–60

    Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalgae Isochrysis galbana in open reactors. Aquaculture 72:247–253

    Article  Google Scholar 

  • Camacho Rubio F, Acien Fernandez FG, Sanchez Perez JA, Garcia Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal cultures. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through culture lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacterium (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    Article  CAS  Google Scholar 

  • Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow fiber modules. Biotechnol Prog 17:265–272

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial size flat glass reactor for mass production of Nannochloropsis sp (Eustigmatophyceae). Aquaculture 195:35–49

    Article  CAS  Google Scholar 

  • Costa JAV, Linde GA, Atala DIP (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16:15–18

    Article  Google Scholar 

  • De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  Google Scholar 

  • Diao YF, Zheng XY, He BS, Chen CH, Xu XC (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45:2283–2296

    Article  CAS  Google Scholar 

  • Garcia-Malea Lopez MC, Del Rio SE, Casas Lopez JL, Acien Fernandez FG, Fernandez Sevilla JM, Rivas J, Guerrero MG, Grima M (2006) Comparative analysis of the outdoor culture of Heamatococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

    Article  CAS  Google Scholar 

  • Grierson S, Strezov V, Herbertson J, Ellem G, Mc Gregor R (2009) Thermal characterization of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85:118–123

    Article  CAS  Google Scholar 

  • Hall DO, Fernandez FGA, Gerrero EC, Rao KK, Grima EM (2003) Outdoor helical tubular photobioreactors for microalgal production; modeling of fluid dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73

    Article  CAS  Google Scholar 

  • Herzog H (2001) What future for carbon capture and sequestration? Environ Sci Technol 35:148A–153A

    Article  CAS  Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas recirculation; anaerobic photoheterotrophic cultivation of purple non-sulfur bacterium. Int J Hydrog Energy 27:1331–1338

    Article  CAS  Google Scholar 

  • Israelsson PH, Chow AC, Adam EE (2009) An updated assessment of the cute impacts of ocean carbon sequestration by direct injection. Int J Greenhouse Gas Cont 4:262–271

    Article  Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Lacerda L, France TT (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactor. Chem Eng Proc 48:306–310

    Article  CAS  Google Scholar 

  • Jacome Pilco CR, Cristiani-Urbania E, Flores-Cotera LB, Velasco-Garcia R, Ponce-Noyola T, Canizares-Villanueva RO (2009) Continuous Cr(VI) removal by Scenedesmus incrassulatus in an airlift photobiorecator. Bioresour Technol 100:2388–2391

    Article  CAS  Google Scholar 

  • Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Xin Y, Sahu A, Zhang Q, Dewalf J, Malcata X, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:317–380

    Article  Google Scholar 

  • Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS (2002) Effects of SO2 and NO on growth of Chlorella sp KR-1. Bioresour Technol 82:1–4

    Article  CAS  Google Scholar 

  • Lee YK, Low CS (1991) Effects of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol Bioeng 38:995–1000

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management. Earthscan, Sterling, VA. ISBN: 978-1-84407-658-1

    Google Scholar 

  • Maeda K, Owada M, Kirmura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    Article  CAS  Google Scholar 

  • Mallik N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390

    Article  Google Scholar 

  • Matsunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirana M, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp using a novel biosolar reactor employing light diffusing optical fibers. Appl Biochem Biotechnol 28(29):157–167

    Article  Google Scholar 

  • Milner HW (1953) Rocking tray. In: Burlew JS (ed) Algal cultures from laboratory to pilot plant. Carnegie Institution, Washington, DC, p 108 No 600

    Google Scholar 

  • Molina E, Fernandez J, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  • Mussugnug JH, Thomas-Hill S, Rupprecht J, Foo A, Klessen V, Mc Dowell A (2007) Engineering photosynthetic light capture impacts on improved solar energy to biomass conversion. Plant Biotechnol 5:802–814

    Article  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Yoshiharu M (1991) Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX. Appl Biochem Biotechnol doi:10.1007/BF02922657

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25000 liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Bioeng 96:129–134

    Article  Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL (2009) Fatty acid production from a highly CO2 tolerant alga Chlorococcum littorale in the presence of inorganic carbon and nitrate. Bioresour Technol 100:5237–5248

    Article  CAS  Google Scholar 

  • Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ (2007) CO2 capture by adsorption with nitrogen enriched carbon. Fuel 86:2204–2012

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobiorectors: production systems for phototrophic microorganisms. Appl Environ Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium; a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  • Ross A, Jones JM, Kubacki ML, Bridgeman TG (2008) Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol 99:6494–6504

    Article  CAS  Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Korube I (1995) Chlorella strains from hot springs tolerant to high-temperature and high CO2. Energ Convers Manag 36:693–696

    Article  CAS  Google Scholar 

  • Sanchez-Miron A, Ceron Garcia MC, Garcia Camacho F, Molina Grima E, Chisti Y (2002) Growth and characterization of microalgal biomass produced in bubble column and airlift photobiorecators; studies in fed-batch cultures. Enzyme Microbiol Technol 31:1015–1023

    Article  CAS  Google Scholar 

  • Shukla SP, Kviderova J, Triska J, Elster J (2013) Chlorella mirabilis as a potential species for biomass production in low-temperature environment. Front Microbiol 4:97. doi:10.3389/fmicb.2013.00097

    Article  CAS  Google Scholar 

  • Shukla SP, Mishra AK, Kashyap AK (1997) Influence of low temperature and salinity stress on growth behaviors and pigment composition of Antarctic and tropical isolates of a diazotrophic cyanobacterium Anabaena. Ind J Exp Biol 35(11):1224–1228

    Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015a) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS (2015b) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP (2013) Plant growth promoting rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  Google Scholar 

  • Skjanes K, Lindblad P, Muller J (2007) Bio CO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24:405–413

    Article  CAS  Google Scholar 

  • Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of photosynthetic bioreactor approach. Energy Convers Manage 46:403–420

    Article  CAS  Google Scholar 

  • Su FS, Lu CS, Cnen WF, Bai HI, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanaotubes. Sci Total Environ 407:3017–3023

    Article  CAS  Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC (1999) Isolation of a new highly CO2 tolerant freshwater microalgae Chlorella sp KR-1. Renew Energ 16:1019–1022

    Article  CAS  Google Scholar 

  • Thies JE, Rilliz MC (2009) Characteristics of biochar: biological properties. In: Lehmann S, Joseph J (eds) Biochar for environmental management. Earthscan, Virginia, pp 85–106

    Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Article  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass culture; understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Tredici MR, Chini Zitelli G (1998) Efficiency of sunlight utilization; tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar ponds: the Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Tsai DDW, Chen PH, Chou CMJ, Hsu CF, Ramraj R (2015) Carbon sequestration by algae ecosystem. Ecol Eng 84:386–389

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2003) Design of static mixers for inclined tubular photobiorectors. J Appl Phycol 15:217–223

    Article  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189

    Article  CAS  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentration on the freshwater microalgae Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    Article  CAS  Google Scholar 

  • Yue LH, Chen WG (2005) Isolation and determination of cultural characterization of a new highly CO2 tolerant freshwater microalgae. Energy Conserv Managmt 46:1868–1876

    Article  CAS  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for micro-algal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25:97–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shukla, S.P., Gita, S., Bharti, V.S., Bhuvaneswari, G.R., Wikramasinghe, W.A.A.D.L. (2017). Atmospheric Carbon Sequestration Through Microalgae: Status, Prospects, and Challenges. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_10

Download citation

Publish with us

Policies and ethics