Skip to main content

Experimental Methods for the Study of Hydrodynamic Cavitation

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 575))

Abstract

A review of traditional and novel experimental methods for the investigation of hydrodynamic cavitation is presented. The importance of water quality is discussed, along with its characterization and management. Methods for the direct and indirect experimental determination of cavitation inception are presented. Along with traditional optical visualization, methods of measuring developed cavitation are described, including point and surface electrical probes, optical bubble probes, acoustic measurements, and indirect measurements of noise and vibration. Recent developments in the use of ionizing radiation as a means to visualize cavitating flows are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acosta, A. J., & Parkin, B. R. (1975). Cavitation inception-a selective review. Journal of Ship Research, 19(4), 193–205.

    Google Scholar 

  • Adrian, R. J., & Westerweel, J. (2011). Particle image velocimetry. Cambridge University Press.

    Google Scholar 

  • Arndt, R. E. (1981). Cavitation in fluid machinery and hydraulic structures. Annual Review of Fluid Mechanics, 13(1), 273–326.

    Article  Google Scholar 

  • Arndt, R. E. (2002). Cavitation in vortical flows. Annual Review of Fluid Mechanics, 34(1), 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Atlar, M. (2002). Final report of the specialist committee on water quality and cavitation. In Proceedings of the 23rd ITTC.

    Google Scholar 

  • Avellan, F., Henry, P., & Ryhming, I. L. (1987). A new high speed cavitation tunnel for cavitation studies in hydraulic machinery. Proceedings of international cavitation research facilities and techniques (Vol. 57, pp. 49–60). Boston: ASME Winter Annual Meeting.

    Google Scholar 

  • Balachandar, S., & Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133.

    Article  MATH  Google Scholar 

  • Benjamin, T. B., & Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 260(1110), 221–240.

    Article  Google Scholar 

  • Billet, M. L. (1985). Cavitation nuclei measurements—a review. Forum: Proceedings of ASME Cavitation and Multiphase Flow.

    Google Scholar 

  • Boyer, C., Duquenne, A. M., & Wild, G. (2002). Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chemical Engineering Science, 57(16), 3185–3215.

    Article  Google Scholar 

  • Brandner, P. A., Lecoffre, Y., & Walker, G. J. (2007). Design considerations in the development of a modern cavitation tunnel. Proceedings of the 16th Australasian fluid mechanics conference (pp. 630–637).

    Google Scholar 

  • Brennen, C. E. (1995). Cavitation and bubble dynamics. Cambridge University Press.

    Google Scholar 

  • Callenaere, M., Franc, J. P., Michel, J., & Riondet, M. (2001). The cavitation instability induced by the development of a re-entrant jet. Journal of Fluid Mechanics, 444, 223–256.

    Article  MATH  Google Scholar 

  • Cartellier, A. (1992). Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas-liquid two-phase flows. Review of Scientific Instruments, 63(11), 5442–5453.

    Article  Google Scholar 

  • Ceccio, S. L. (2010). Friction drag reduction of external flows with bubble and gas injection. Annual Review of Fluid Mechanics, 42, 183–203.

    Article  Google Scholar 

  • Ceccio, S. L., & Brennen, C. E. (1991). Observations of the dynamics and acoustics of travelling bubble cavitation. Journal of Fluid Mechanics, 233, 633–660.

    Article  Google Scholar 

  • Ceccio, S. L., & Brennen, C. E. (1992). Dynamics of attached cavities on bodies of revolution. Journal of Fluids Engineering, 114(1), 93–99.

    Article  Google Scholar 

  • Ceccio, S. L., & George, D. L. (1996). A review of electrical impedance techniques for the measurement of multiphase flows. Journal of Fluids Engineering, 118(2), 391–399.

    Article  Google Scholar 

  • Ceccio, S. L., Gowing, S., & Gindroz, B. (1995). A comparison of csm bubble detection methods. In Proceedings of A.S.M.E. symposium on cavitation and gas-liquid flows in fluid machinery. FED (Vol. 226, pp. 43–50).

    Google Scholar 

  • Chahine, G. L., & Kalumuck, K. M. (2003). Development of a near real-time instrument for nuclei measurement: The abs acoustic bubble spectrometer. Proceedings of A.S.M.E./J.S.M.E. 4th joint fluids summer engineering conference (pp. 183–191).

    Google Scholar 

  • Chahine, G. L., & Shen, Y. T. (1986). Bubble dynamics and cavitation inception in cavitation susceptibility meters. Journal of Fluids Engineering, 108(4), 444–452.

    Article  Google Scholar 

  • Chambers, S. D., Bartlett, R. H., & Ceccio, S. L. (2000). Hemolytic potential of hydrodynamic cavitation. Journal of Biomechanical Engineering, 122(4), 321–326.

    Article  Google Scholar 

  • Chang, K. A., Lim, H. J., & Su, C. B. (2003). Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Review of Scientific Instruments, 74(7), 3559–3565.

    Article  Google Scholar 

  • Chang, N., Ganesh, H., Yakushiji, R., & Ceccio, S. L. (2011). Tip vortex cavitation suppression by active mass injection. Journal of Fluids Engineering, 133(11301), 1–11.

    Google Scholar 

  • Chang, N. A., & Ceccio, S. L. (2011). The acoustic emissions of cavitation bubbles in stretched vortices. The Journal of the Acoustical Society of America, 130(5), 3209–3219.

    Article  Google Scholar 

  • Chang, N. A., & Dowling, D. R. (2009). Ray-based acoustic localization of cavitation in a highly reverberant environment. Journal of the Acoustical Society of America, 125(5), 3088–3100.

    Article  Google Scholar 

  • Choi, J., & Ceccio, S. L. (2007). Dynamics and noise emission of vortex cavitation bubbles. Journal of Fluid Mechanics, 575, 1–26.

    Article  MATH  Google Scholar 

  • Coutier-Delgosha, O., Devillers, J. F., Pichon, T., Vabre, A., Woo, R., & Legoupil, S. (2006). Internal structure and dynamics of sheet cavitation. Physics of Fluids (1994-present), 18(1), 017103.

    Google Scholar 

  • Coutier-Delgosha, O., Stutz, B., Vabre, A., & Legoupil, S. (2007). Analysis of cavitating flow structure by experimental and numerical investigations. Journal of Fluid Mechanics, 578, 171–222.

    Article  MATH  Google Scholar 

  • d’Agostino, L., & Acosta, A. J. (1991). A cavitation susceptibility meter with optical cavitation monitoring–part one: Design concepts. Journal of Fluids Engineering, 113(2), 261–269.

    Article  Google Scholar 

  • Dular, M., Bachert, R., Stoffel, B., & Širok, B. (2005). Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. European Journal of Mechanics-B/Fluids, 24(4), 522–538.

    Article  MATH  Google Scholar 

  • Duraiswami, R., Prabhukumar, S., & Chahine, G. L. (1998). Bubble counting using an inverse acoustic scattering method. Journal of the Acoustical Society of America, 104(5), 2699–2717.

    Article  Google Scholar 

  • Durst, F. (1982). Review–combined measurements of particle velocities, size distributions, and concentrations. Journal of Fluids Engineering, 104(3), 284–296.

    Article  Google Scholar 

  • Elbing, B. R., Mäkiharju, S. A., Wiggins, A., Perlin, M., Dowling, D. R., & Ceccio, S. L. (2013). On the scaling of air layer drag reduction. Journal of Fluid Mechanics, 717, 484–513.

    Article  MATH  Google Scholar 

  • Escaler, X., Egusquiza, E., Farhat, M., Avellan, F., & Coussirat, M. (2006). Detection of cavitation in hydraulic turbines. Mechanical Systems and Signal Processing, 20(4), 983–1007.

    Article  Google Scholar 

  • Etter, R. J., Cutbirth, J. M., Ceccio, S. L., Dowling, D. R., & Perlin, M. (2005). High reynolds number experimentation in the U.S. Navy’s William B. Morgan large cavitation channel. Measurement Science and Technology, 16(9), 1701–1709.

    Article  Google Scholar 

  • Foeth, E. J., Van Doorne, C. W. H., Van Terwisga, T., & Wieneke, B. (2006). Time resolved PIV and flow visualization of 3D sheet cavitation. Experiments in Fluids, 40(4), 503–513.

    Article  Google Scholar 

  • Ganesh, H., Mäkiharju, S. A., & Ceccio, S. L. (2016). Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. Journal of Fluid Mechanics, 802, 37–78.

    Google Scholar 

  • George, D. L., Iyer, C. O., & Ceccio, S. L. (2000a). Measurement of the bubbly flow beneath partial attached cavities using electrical impedance probes. Journal of Fluids Engineering, 122(1), 151–155.

    Article  Google Scholar 

  • George, D. L., Torczynski, J. R., Shollenberger, K. A., O’Hern, T. J., & Ceccio, S. L. (2000b). Validation of electrical-impedance tomography for measurements of material distribution in two-phase flows. International Journal of Multiphase Flow, 26(4), 549–581.

    Article  MATH  Google Scholar 

  • Gindroz, B. (1998). Cavitation nuclei and cavitation inception of marine propellers: State of the art at the dawn of the 21st century. J.S.M.E. International Journal Series B, 41(2), 464–471.

    Google Scholar 

  • Gindroz, B., & Billet, M. L. (1998). Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers. Journal of Fluids Engineering, 120(1), 171–178.

    Article  Google Scholar 

  • Goldstein, R. (1996). Fluid mechanics measurements. CRC Press.

    Google Scholar 

  • Gopalan, S., & Katz, J. (2000). Flow structure and modeling issues in the closure region of attached cavitation. Physics of Fluids, 12(4), 895–911.

    Article  MATH  Google Scholar 

  • Gopalan, S., Katz, J., & Knio, O. (1999). The flow structure in the near field of jets and its effect on cavitation inception. Journal of Fluid Mechanics, 398, 1–43.

    Article  MATH  Google Scholar 

  • Gowing, S., Briançon-Marjollet, L., Frechou, D.,& Godeffroy, V. (1995). Dissolved gas and nuclei effects on tip vortex cavitation inception and cavitating core size. In Proceedings of 5th international symposium on cavitation (pp. 173–180).

    Google Scholar 

  • Hassan, Y. A., Blanchat, T. K., Seeley, C. H., & Canaan, R. E. (1992). Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry. International Journal of Multiphase Flow, 18(3), 371–395.

    Article  MATH  Google Scholar 

  • Heindel, T. J. (2011). A review of X-ray flow visualization with applications to multiphase flows. Journal of Fluids Engineering, 133(074001), 1–16.

    MathSciNet  Google Scholar 

  • Hewitt, G. F. (1978). Measurement of two phase flow parameters. Academic Press.

    Google Scholar 

  • Iyer, C. O., & Ceccio, S. L. (2002). The influence of developed cavitation on the flow of a turbulent shear layer. Physics of Fluids, 14(10), 3414–3431.

    Article  MATH  Google Scholar 

  • Katz, J.,& Acosta, A. (1981). Observations of nuclei in cavitating flows. Proceedings of I.U.T.A.M. symposium on mechanics and physics of bubbles in liquids (pp. 123–132).

    Google Scholar 

  • Katz, J., & Sheng, J. (2010). Applications of holography in fluid mechanics and particle dynamics. Annual Review of Fluid Mechanics, 42, 531–555.

    Article  Google Scholar 

  • Katz, J., Gowing, S., O’Hern, T., & Acosta, A. (1984). A comparative study between holographic and light-scattering techniques of microbubble detection. Proceedings of I.U.T.A.M. symposium on measuring techniques in gas-liquid two-phase flows (pp. 41–66).

    Google Scholar 

  • Kawanami, Y., Kato, H., Yamaguchi, H., Maeda, M.,& Nakasumi, S. (2002). Inner structure of cloud cavity on a foil section. J.S.M.E. International Journal Series B Fluids and Thermal Engineering, 45(3), 655–661.

    Google Scholar 

  • Keller, A. P. (1972). The influence of the cavitation nucleus spectrum on cavitation inception, investigated with a scattered light counting method. Journal of Fluids Engineering, 94(4), 917–925.

    Google Scholar 

  • Keller, A. P. (1987). A vortex-nozzle cavitation susceptibility meter in routine application in cavitation inception measurements. In Proceedings of euromech colloquium 222-unsteady cavitation and its effects.

    Google Scholar 

  • Keller, A. P. (2001). Cavitation scale effects—empirically found relations and the correlation of cavitation number and hydrodynamic coefficients. In Proceedings of fourth international symposium on cavitation-CAV2001.

    Google Scholar 

  • Kjeldsen, M., Arndt, R. E. A., & Effertz, M. (2000). Spectral characteristics of sheet/cloud cavitation. Journal of Fluids Engineering, 122(3), 481–487.

    Article  Google Scholar 

  • Kling, C. L., & Hammitt, F. G. (1972). A photographic study of spark-induced cavitation bubble collapse. Journal of Fluids Engineering, 94(4), 825–832.

    Google Scholar 

  • Koivula, T. (2000). On cavitation in fluid power. In Proceedings of 1st FPNI-PhD symposium, Hamburg (pp. 371–382).

    Google Scholar 

  • Kubota, A., Kato, H., Yamaguchi, H., & Maeda, M. (1989). Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. Journal of Fluids Engineering, 111(2), 204–210.

    Article  Google Scholar 

  • Kuhn de Chizelle, Y., Ceccio, S. L., & Brennen, C. E. (1995). Observations and scaling of travelling bubble cavitation. Journal of Fluid Mechanics, 293, 99–126.

    Article  Google Scholar 

  • Kuiper, G. (1985). Reflections on cavitation inception. In Proceedings of A.S.M.E. cavitaiton and multiphase flow forum, FED-23.

    Google Scholar 

  • Kumar, S. B., Dudukovic, M. P., Chaouki, J., Larachi, F., & Dudukovic, M. P. (1997). Computer assisted gamma and x-ray tomography: Applications to multiphase flow systems. Non-invasive monitoring of multiphase flows (pp. 47–103).

    Google Scholar 

  • Laberteaux, K. R., & Ceccio, S. L. (2001a). Partial cavity flows. part 1. cavities forming on models without spanwise variation. Journal of Fluid Mechanics, 431, 1–41.

    Article  MATH  Google Scholar 

  • Laberteaux, K. R., & Ceccio, S. L. (2001b). Partial cavity flows. part 2. cavities forming on test objects with spanwise variation. Journal of Fluid Mechanics, 431, 43–63.

    Article  MATH  Google Scholar 

  • Lauterborn, W., & Bolle, H. (1975). Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. Journal of Fluid Mechanics, 72(2), 391–399.

    Article  Google Scholar 

  • Lauterborn, W., & Hentschel, W. (1985). Cavitation bubble dynamics studied by high speed photography and holography: Part one. Ultrasonics, 23(6), 260–268.

    Article  Google Scholar 

  • Lavigne, S. (1991). Le venturi analyseur de germes. Journees DRET Cavitation.

    Google Scholar 

  • Le, Q., Franc, J. P., & Michel, J. M. (1993). Partial cavities: Pressure pulse distribution around cavity closure. Journal of Fluids Engineering, 115(2), 249–254.

    Article  Google Scholar 

  • Le Corre, J.-M., Hervieu, E., Ishii, M., & Delhaye, J.-M. (2003). Benchmarking and improvements of measurement techniques for local-time-averaged two-phase flow parameters. Experiments in fluids, 35(5), 448–458.

    Article  Google Scholar 

  • Lecoffre, Y., & Bonnin, J. (1979). Cavitation tests and nucleation control. In Proceedings of A.S.M.E. international symposium on cavitation inception (pp. 141–145).

    Google Scholar 

  • Lecoffre, Y., Chantrel, P., & Teiller, J. (1987). Le grand tunnel hydrodynamique (GTH): France’s new large cavitation tunnel for naval hydrodynamics research. In Proceedings of A.S.M.E. international symposium on cavitation research facilities and techniques (pp. 13–18).

    Google Scholar 

  • Lee, I.-H., Mäkiharju, S., Ganesh, H., & Ceccio, S. L. (2016). Scaling of gas diffusion into limited partial cavities. Journal of Fluids Engineering.

    Google Scholar 

  • Leger, A. T., & Ceccio, S. L. (1998). Examination of the flow near the leading edge of attached cavitation. part 1. detachment of two-dimensional and axisymmetric cavities. Journal of Fluid Mechanics, 376, 61–90.

    Article  MATH  Google Scholar 

  • Leger, A. T., Bernal, L. P., & Ceccio, S. L. (1998). Examination of the flow near the leading edge of attached cavitation. part 2. incipient breakdown of two-dimensional and axisymmetric cavities. Journal of Fluid Mechanics, 376, 91–113.

    Article  MATH  Google Scholar 

  • Li, C. Y., & Ceccio, S. L. (1996). Interaction of single travelling bubbles with the boundary layer and attached cavitation. Journal of Fluid Mechanics, 322, 329–353.

    Article  Google Scholar 

  • Lindken, R., & Merzkirch, W. (2002). A novel piv technique for measurements in multiphase flows and its application to two-phase bubbly flows. Experiments in Fluids, 33(6), 814–825.

    Article  Google Scholar 

  • Lucas, G. P., & Mishra, R. (2005). Measurement of bubble velocity components in a swirling gas-liquid pipe flow using a local four-sensor conductance probe. Measurement Science and Technology, 16(3), 749–758.

    Article  Google Scholar 

  • Mäkiharju, S. A., Gabillet, C., Paik, B.-G., Chang, N. A., Perlin, M., & Ceccio, S. L. (2013). Time-resolved two-dimensional x-ray densitometry of a two-phase flow downstream of a ventilated cavity. Experiments in Fluids, 54(7), 1–21.

    Article  Google Scholar 

  • McNulty, P. J., & Pearsall, I. S. (1982). Cavitation inception in pumps. Journal of Fluids Engineering, 104(1), 99–104.

    Article  Google Scholar 

  • Mørch, K. A. (2007). Reflections on cavitation nuclei in water. Physics of Fluids, 19(072104), 1–7.

    MATH  Google Scholar 

  • Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C., & Farhat, M. (2006). Cavitation bubble dynamics inside liquid drops in microgravity. Physical Review Letters, 97(094502), 1–4.

    Google Scholar 

  • O’Hern, T. J., Katz, J., & Acosta, A. J. (1985). Holographic measurements of cavitation nuclei in the sea. In Proceedings of A: S.M.E. cavitation and multiphase flow forum.

    Google Scholar 

  • Ohl, C. D., Philipp, A., & Lauterborn, W. (1995). Cavitation bubble collapse studied at 20 million frames per second. Annalen der Physik, 507(1), 26–34.

    Article  Google Scholar 

  • Ohl, C. D., Lindau, O., & Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser induced bubbles. Physical Review Letters, 80(2), 393–396.

    Article  Google Scholar 

  • Oldenziel, D. M. (1982). A new instrument in cavitation research: the cavitation susceptibility meter. Journal of Fluids Engineering, 104(2), 136–141.

    Article  Google Scholar 

  • Oweis, G. F., Choi, J., & Ceccio, S. L. (2004). Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field. Journal of the Acoustical Society of America, 115(3), 1049–1058.

    Article  Google Scholar 

  • Pham, T. M., Larrarte, F., & Fruman, D. H. (1999). Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. Journal of Fluids Engineering, 121(2), 289–296.

    Article  Google Scholar 

  • Rae, W. H.,& Pope, A. (1984). Low-speed wind tunnel testing, 2nd edition. Wiley.

    Google Scholar 

  • Ran, B., & Katz, J. (1994). Pressure fluctuations and their effect on cavitation inception within water jets. Journal of Fluid Mechanics, 262, 223–263.

    Article  Google Scholar 

  • Rood, E. P. (1991). Review–mechanisms of cavitation inception. Journal of Fluids Engineering, 113(2), 163–175.

    Article  Google Scholar 

  • Rooze, J., Rebrov, E. V., Schouten, J. C., & Keurentjes, J. T. (2013). Dissolved gas and ultrasonic cavitation-a review. Ultrasonics Sonochemistry, 20(1), 1–11.

    Article  Google Scholar 

  • Roth, H., Gavaises, M.,& Arcoumanis, C. (2002). Cavitation initiation, its development and link with flow turbulence in diesel injector nozzles. S.A.E. Technical Paper, (2002-01-0214).

    Google Scholar 

  • Sato, R., Mori, T., Yakushiji, R., Naganuma, K., Nishimura, M., Nakagawa, K.,& Sasajima, T. (2003). Conceptual design of the flow noise simulator. In Proceedings of joint A.S.M.E./J.S.M.E. 4th joint fluids summer engineering conference (pp. 129–133).

    Google Scholar 

  • Schiebe, F. R. (1972). Measurement of the cavitation susceptibility of water using standard bodies. St. Anthony Falls Laboratory Project Report 118, University of Minnesota.

    Google Scholar 

  • Shen, Y. T., & Dimotakis, P. E. (1989). Viscous and nuclei effects on hydrodynamic loadings and cavitation of a naca 66 (mod) foil section. Journal of Fluids Engineering, 111(3), 306–316.

    Article  Google Scholar 

  • Simoni, R. D., Hill, R. L., & Vaughan, M. (2002). The measurement of blood gases and the manometric techniques developed by donald dexter van slyke. Journal of Biological Chemistry, 277(27), e16.

    Google Scholar 

  • Straka, W. A., Meyer, R. S., Fontaine, A. A., & Welz, J. P. (2010). Cavitation inception in quiescent and co-flow nozzle jets. Journal of Hydrodynamics, Series B, 22(5), 813–819.

    Article  Google Scholar 

  • Stutz, B. (2003). Influence of roughness on the two-phase flow structure of sheet cavitation. Journal of Fluids Engineering, 125(4), 652–659.

    Article  Google Scholar 

  • Stutz, B., & Legoupil, S. (2003). X-ray measurements within unsteady cavitation. Experiments in Fluids, 35(2), 130–138.

    Article  Google Scholar 

  • Stutz, B., & Reboud, J. L. (2000). Measurements within unsteady cavitation. Experiments in Fluids, 29(6), 522–545.

    Article  Google Scholar 

  • Tanger, H., & Weitendorf, E. A. (1992). Applicability tests for the phase doppler anemometer for cavitation nuclei measurements. Journal of Fluids Engineering, 114(3), 443–449.

    Article  Google Scholar 

  • Thoroddsen, S. T., Etoh, T. G., & Takehara, K. (2008). High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 40, 257–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Tropea, C., Yarin, A. L., & Foss, J. F. (Eds.). (2007). Springer handbook of experimental fluid mechanics. Springer Science and Business Media.

    Google Scholar 

  • Van der Kooij, J., & De Bruijn, A. (1984). Acoustic measurements in the NSMB depressurized towing tank. International Shipbuilding Progress, 31(353), 13–25.

    Google Scholar 

  • Vogel, A., & Lauterborn, W. (1988). Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics. Applied Optics, 27(9), 1869–1876.

    Article  Google Scholar 

  • Wetzel, J. M., & Arndt, R. E. A. (1994a). Hydrodynamic design considerations for hydroacoustic facilities: Part I- flow quality. Journal of Fluids Engineering, 116(2), 324–331.

    Article  Google Scholar 

  • Wetzel, J. M., & Arndt, R. E. A. (1994b). Hydrodynamic design considerations for hydroacoustic facilities: Part II- pump design factors. Journal of Fluids Engineering, 116(2), 332–337.

    Article  Google Scholar 

  • Wosnik, M., Schauer, T. J., & Arndt, R. E. (2003). Experimental study of a ventilated supercavitating vehicle. In Proceedings of fifth international symposium on cavitation (pp. 1–4).

    Google Scholar 

  • Wu, Q., & Ishii, M. (1999). Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. International Journal of Multiphase Flow, 25(1), 155–173.

    Article  MATH  Google Scholar 

  • Yu, P. W., & Ceccio, S. L. (1997). Diffusion induced bubble populations downstream of a partial cavity. Journal of Fluids Engineering, 119(4), 782–787.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Prof. Salvetti and Prof. d’Agostino for their invitation to the Udine summer course on cavitating flows. The authors wish to acknowledge the support of the U.S. Office of Naval Research and the U.S. Naval Sea Systems Command for their ongoing support of their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Ceccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Ceccio, S.L., Mäkiharju, S.A. (2017). Experimental Methods for the Study of Hydrodynamic Cavitation. In: d'Agostino, L., Salvetti, M. (eds) Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines. CISM International Centre for Mechanical Sciences, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-49719-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49719-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49717-4

  • Online ISBN: 978-3-319-49719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics