Skip to main content

From Cavitating to Boiling Flows

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 575))

Abstract

A flow model is derived for the numerical simulation of interfacial flows with phase transition. The model arises from the classical multi-component Euler equations, but is associated to a non-classical thermodynamic closure: each phase is compressible and evolves in its own subvolume, with phases sharing common pressure, velocity and temperature, leading to non-trivial thermodynamic relations for the mixture. Phase transition is made possible through the introduction of Gibbs free energy relaxation terms in the equations. Capillary effects and heat conduction—essential in boiling flows—are introduced as well. The resulting multi-phase flow model is hyperbolic, valid for arbitrary density jumps at interfaces as well as arbitrary flow speeds. Its capabilities are illustrated successively through examples of nozzle induced cavitation and heated wall induced boiling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barre, S., Rolland, J., Boitel, G., Goncalves, E., & Fortes Patella, R. (2009). Experiments and modeling of cavitating flows in Venturi: Attached sheet cavitation. European Journal of Mechanics-B/Fluids, 280(3), 444–464.

    Google Scholar 

  • Brackbill, J. U., Kothe, D. B., & Zemach, C. I. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 1000(2), 335–354.

    Google Scholar 

  • Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 280(2), 258–267.

    Google Scholar 

  • Chaves, H. (1984). Changes of phase and waves on depressurization of liquids with high specific heat. NASA STI/Recon Technical Report N, 84, 25003.

    Google Scholar 

  • Coutier-Delgosha, O., Fortes-Patella, R., & Reboud., J.-C. (2003). Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engineering, 1250(1), 38–45.

    Google Scholar 

  • d’Agostino, L., & Salvetti, M. V. (2008). Fluid dynamics of cavitation and cavitating turbopumps (Vol. 496). Springer Science & Business Media.

    Google Scholar 

  • Davis, S. F. (1988) Simplified second-order Godunov-type methods. SIAM Journal on Scientific and Statistical Computing, 90(3), 445–473.

    Google Scholar 

  • Goncalves, E., & Patella, R. F. (2009). Numerical simulation of cavitating flows with homogeneous models. Computers & Fluids, 380(9), 1682–1696.

    Google Scholar 

  • Jamet, D., Lebaigue, O., Coutris, N., & Delhaye, J. M. (2001). The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. Journal of Computational Physics, 1690(2), 624–651.

    Google Scholar 

  • Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F., & Stewart, D. S. (2001). Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of Fluids (1994–present), 130(10), 3002–3024.

    Google Scholar 

  • Le Martelot, S., Nkonga, B., & Saurel, R. (2013). Liquid and liquid-gas flows at all speeds. Journal of Computational Physics, 255, 53–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Le Martelot, S., Saurel, R., & Nkonga, B. (2014). Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multiphase Flow, 66, 62–78.

    Article  MathSciNet  Google Scholar 

  • Le Métayer, O., & Saurel, R. (2016). The Noble-Abel—Stiffened-Gas equation of state. Physics of Fluids 28(4), 046102.

    Google Scholar 

  • Le Métayer, O., Massoni, J., & Saurel, R. (2004). Elaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques. International Journal of Thermal Sciences, 430(3), 265–276.

    Google Scholar 

  • Lund, H. (2012). A hierarchy of relaxation models for two-phase flow. SIAM Journal on Applied Mathematics, 720(6), 1713–1741.

    Google Scholar 

  • Menikoff, R., & Plohr, B.J. (1989). The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, 610(1), 75.

    Google Scholar 

  • Murrone, A., & Guillard, H. (2005). A five equation reduced model for compressible two phase flow problems. Journal of Computational Physics, 2020(2), 664–698.

    Google Scholar 

  • Saurel, R., Petitpas, F., Abgrall, R., et al. (2008). Modelling phase transition in metastable liquids: Application to cavitating and flashing flows. Journal of Fluid Mechanics, 6070(1), 313–350.

    Google Scholar 

  • Simoes-Moreira, J. R., & Shepherd, J. E. (1999). Evaporation waves in superheated dodecane. Journal of Fluid Mechanics, 382, 63–86.

    Google Scholar 

  • Sinibaldi, E., Beux, F., & Salvetti, M. V. (2006). A numerical method for 3D barotropic flows in turbomachinery. Flow, Turbulence and Combustion, 760(4), 371–381.

    Google Scholar 

  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Springer Science & Business Media.

    Google Scholar 

  • Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 40(1), 25–34.

    Google Scholar 

  • Wood, A. B. (1930). A textbook of sound. London: G. Bell and Sons Ltd.

    Google Scholar 

Download references

Acknowledgements

Part of this work has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the Investissements d’Avenir French Government program managed by the French National Research Agency (ANR). We also acknowledge funding from ANR through project ANR-14-CE22-0014. Pr. Stéphane Barre (LEGI) is also gratefully acknowledged for providing the photographs of Fig. 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Saurel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Saurel, R., Le Métayer, O., Boivin, P. (2017). From Cavitating to Boiling Flows. In: d'Agostino, L., Salvetti, M. (eds) Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines. CISM International Centre for Mechanical Sciences, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-49719-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49719-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49717-4

  • Online ISBN: 978-3-319-49719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics