Skip to main content

An Introduction to Cavitation in Inducers and Turbopumps

  • Chapter
  • First Online:
  • 1272 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 575))

Abstract

After a brief review of the fundamental aspects of cavitation relevant to the operation of high-performance inducers and turbopumps, the article summarizes their application to the analysis of pumping systems, illustrates the scaling of cavitation phenomena from model tests to full-scale operation, describes the occurrence of flow-induced instabilities in turbomachinery, and introduces the concepts of static and dynamic instability of pumping systems and their generalization to cavitating turbopump systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbot, H. F., et al. (1963). Measurements of auto-oscillation in hydroelectric supply tunnel and penstock system. ASME Journal Basic Engineering, 85, 625–630.

    Google Scholar 

  • Acosta, A. J. (1974). Cavitation and fluid machinery. In Cavitation (pp. 386–396), Conference held at Heriot-Watt University, Edinburgh, Scotland, September 1974, London Institution of Mechanical Engineers.

    Google Scholar 

  • Acosta, A. J., and Hollander, A. (1959). Remarks on Cavitation in Turbomachines. California Institute Technical Report No. 79.3, Pasadena, CA, USA.

    Google Scholar 

  • Acosta, A. J., & Parkin, B. R. (1975). Cavitation inception—a selective review. Journal of Ship Research, 19, 193–205.

    Google Scholar 

  • Apfel, R. E. (1970). The role of impurities in cavitation-threshold determination. Journal of the Acoustical Society of America, 48(5), 1179–1186, Part 2.

    Google Scholar 

  • Arndt, R. E. A. (1981). Cavitation in fluid machinery and hydraulic structures. Annual Review of Fluid Mechanics, 13, 273–328.

    Google Scholar 

  • Barr, R. A. (1967). Study of instabilities in high tandem row inducer pumps. Hydronautics Interim Technical Report 703-1.

    Google Scholar 

  • Bader, H. (1970). The hyperbolic distribution of particle sizes. Journal of Geophysical Research, 75(15), 2822–2830.

    Article  Google Scholar 

  • Betz, A., & Petersohn, E. (1931). Anwendung du Theorie der Frien Strahlen. In Ingenieur Archiv, Band II.

    Google Scholar 

  • Bhattacharyya, A. (1994). Internal Flows and Force Matrices in Axial Flow Inducers. Report No. E249.18, California Institute of Technology, Pasadena, USA.

    Google Scholar 

  • Bhattacharyya, A., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1997). Rotordynamic forces in cavitating inducers. ASME Journal of Fluids Engineering, 199(4), 768–774.

    Article  Google Scholar 

  • Billet, M. L. (1970). Thermodynamic efects on developed cavitation in water and freon 113. M.S. thesis, Department of Aerospace Engineering, Pennsylvania State University, University Park, PA, USA.

    Google Scholar 

  • Billet, M. L., et al. (1978). Correlations of thermodynamic effects for developed cavitation. In Polyphase flow in turbomachinery (pp. 271–289). ASME Special Publications.

    Google Scholar 

  • Billet, M. L., et al. (1981). Correlations of thermodynamic effects for developed cavitation. ASME Journal of Fluids Engineering, 103, 534–542.

    Google Scholar 

  • Blake, F. G. Jr. (1949). The Onset of Cavitation in Liquids. In Harvard Acoustics Research Laboratory, TM 12.

    Google Scholar 

  • Braisted, D. M. (1979). Cavitation Induced Instabilities Associated with Turbomachines. Report No. E184.2, California Institute of Technology, Pasadena, CA, USA.

    Google Scholar 

  • Brennen, C. E. (1978a). Bubbly flow model for the dynamic characteristics of cavitating pumps. Journal of Fluid Mechanics, 89, 223–240.

    Article  Google Scholar 

  • Brennen, C. E. (1978b). On unsteady dynamic response of phase changes in hydraulic systems. In Proceedings of International Seminar of Center for Heat and Mass Transfer in Two-Phase and Chemical Systems, Dubrovnik, Yugoslavia, Hemisphere Publishing Corporation.

    Google Scholar 

  • Brennen, C. E. (1969). The Dynamic balances of dissolved air and heat in natural cavity flows. Journal of Fluid Mechanics, 37, 115–127.

    Article  Google Scholar 

  • Brennen, C. E. (1994). Hydrodynamics of pumps. Oxford Engineering Science Series 44. Oxford University Press.

    Google Scholar 

  • Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford University Press.

    Google Scholar 

  • Brennen, C. E. (2005). Fundamentals of multiphase flows. Cambridge University Press.

    Google Scholar 

  • Brennen, C. E. (1973). The dynamic behavior and compliance of a stream of cavitating bubbles. Transactions of the ASME Journal Fluids Engineering, 533–541.

    Google Scholar 

  • Brennen, C. E., & Acosta, A. J. (1973). Theoretical, quasi-static analysis of cavitation compliance in turbopumps. Journal of Spacecraft, 10(3), 175–179.

    Article  Google Scholar 

  • Brennen, C. E., & Acosta, A. J. (1976). The dynamic transfer function for a cavitating inducer. ASME Journal of Fluids Engineering, 98, 182–191.

    Article  Google Scholar 

  • Brennen, C. E., & Braisted, D. M. (1980). Stability of hydraulic systems with focus on cavitating pumps. In Proceedings of IAHR Conference, Tokyo, Japan.

    Google Scholar 

  • Brennen, C. E., et al. (1982). Scale effects in the dynamic transfer functions for cavitating inducers. ASME Journal of Fluids Engineering, 104, 428–433.

    Google Scholar 

  • Childs, D. W. (1983). Finite length solutions for rotordynamic coefficients of turbulent annular seals. ASME Journal of Lubrication Technology, 105, 437–444.

    Google Scholar 

  • Chivers, T. C. (1969). Cavitation in centrifugal pumps. In Proceedings of the Institution of Mechanical Engineers, 184(2), Pt. l.

    Google Scholar 

  • Colding-Jorgensen, J. (1980). Effect of fluid forces on rotor stability of centrifugal compressors and pumps. In 1st Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, TX, USA.

    Google Scholar 

  • d’Agostino, L., & Acosta, A. J. (1991a). A cavitation susceptibility meter with optical cavitation monitoring—part one: design concepts. ASME Journal of Fluids Engineering, 113(2), 261–269.

    Article  Google Scholar 

  • d’Agostino, L., & Acosta, A. J. (1991b). A cavitation susceptibility meter with optical cavitation monitoring—part two: experimental apparatus and results. ASME Journal of Fluids Engineering, 113(2), 270–277.

    Article  Google Scholar 

  • d’Agostino, L., & Acosta, A. J. (1991c). Separation and surface nuclei effects in a cavitation susceptibility meter. ASME Journal of Fluids Engineering, 113(4), 695–699.

    Article  Google Scholar 

  • Dorian, H. H. (1977). Space Shuttle POGO Prevention. SAE, 770969.

    Google Scholar 

  • Ehrich, F. F. (1967). The influence of trapped fluids in high speed rotor vibration. ASME Journal of Engineering for Industry, 806–812.

    Google Scholar 

  • Eisenberg, P. (1961). Mechanics of cavitation. In V.L. Streeter (Ed.), Handbook of fluid dynamics (pp. 12.2–12.24). New York: McGraw-Hill.

    Google Scholar 

  • Epstein, P. S., & Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. Journal of Chemical Physics, 18, 1505–1509.

    Article  Google Scholar 

  • Etter, R. J. (1970). An Investigation on Tandem Row High Head Inducers. Hydronautics Technical Report 703-9.

    Google Scholar 

  • Farrel, E. C., & Fenwick, J. R. (1973). Pogo Instabilities Suppression Evaluation. NASA Report CR-134500.

    Google Scholar 

  • Fashbaugh, R. H., & Streeter, V. L. (1965). Resonance in liquid rocket engine systems. Transactions of the ASME, Series D, 87(4).

    Google Scholar 

  • Fox, F. E., & Herzfeld, K., F. (1954). Gas Bubbles with Organic Skin as Cavitation Nuclei. Journal of the Acoustical Society of America, 26, 984.

    Google Scholar 

  • Franc, J. -P., & Michel, J. -M. (2004). Fundamentals of cavitation. Kluwer Academic Publishers.

    Google Scholar 

  • Franz, R. J. (1989). Experimental Investigation of the Effect of Cavitation on the Rotordynamic Forces on a Whirling Centrifugal Pump Impeller. Ph.D. Thesis, California Institute of Technology, Pasadena, USA.

    Google Scholar 

  • Gelder, T. F., Ruggeri, R. S., & Moore, R. D. (1966). Cavitation Similarity Considerations Based on Measured Pressure and Temperature Depressions in Cavitated Regions of Freon 114. In NASA TN D-3509.

    Google Scholar 

  • Greitzer, E. M. (1976a). Surge and rotating stall in axial flow compressors—part I: Theoretical compression system model. ASME Journal of Engineering for Power, 98, 190–198.

    Google Scholar 

  • Greitzer, E. M. (1976b). Surge and rotating stall in axial flow compressors—part II: Experimental results and comparison with theory. ASME Journal of Engineering for Power, 98, 198–211.

    Google Scholar 

  • Greitzer, E. M. (1981). The stability of pumping systems. ASME Journal of Fluids Engineering, 103, 193–242.

    Google Scholar 

  • Goggin, D. C. (1982) Field experiences with rub induced instabilities in turbomachinery. In 2nd Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, TX, USA.

    Google Scholar 

  • Gongwer, C. A. (1941). A theory of cavitation flow in centrifugal pump impellers. Transactions of the ASME, 63, 29–40.

    Google Scholar 

  • Grabowski, B. (1982). Shaft vibrations in turbomachinery excited by cracks. In 2nd Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, TX, USA.

    Google Scholar 

  • Gunter, E. J., Springer, H., & Humphris, R. (1982). Influence of unbalance on the stability characteristics of flexible rotor bearing systems. In ASME/Applied Mechanics, Bioengineering and Fluids Engineering Conference (Vol. 55), Houston, TX, USA, AMD.

    Google Scholar 

  • Harvey, E. N., McElroy, W. D., & Whiteley, A. H. (1947). On cavity formation in water. Journal of Applied Physics, 18, 162.

    Google Scholar 

  • Hashimoto, T., Yoshida, M., Watanabe, M., Kamijo, K., & Tsujimoto, Y. (1997). Experimental study of rotating cavitation of rocket propellant pump inducers. AIAA Journal of Propulsion and Power, 13(4), 488–494.

    Article  Google Scholar 

  • Hobson, D. E., & Marshall, A. (1979). Surge in centrifugal pumps. In Proceedings of 6th Conference on Fluid Machinery (Vol. 1), Hungarian Academy of Sciences, Budapest.

    Google Scholar 

  • Holl, J. W. (1969). Limited cavitation. ASME, Cavitation State of Knowledge, 26–63.

    Google Scholar 

  • Holl, J. W. (1970). Nuclei and cavitation. ASME Journal of Basic Engineering, 92, 681–688.

    Google Scholar 

  • Holl, J. W., & Wislicenus, G. F. (1961). Scale effects on cavitation. ASME Journal of Basic Engineering, 385–398.

    Google Scholar 

  • Holl, J. W. et al. (1975). Thermodynamic effect on developed cavitation. In: Cavity Flows, ASME Fluids Engineering Conference (pp. 101–109), Minneapolis, MN, USA.

    Google Scholar 

  • Hord, J., Anderson, L. M., & Hall, W. J. (1972). Cavitation in Liquid Cryogens. I. Venturi. In NASA CR-2054 (83 pp).

    Google Scholar 

  • Hord. J. (1973a). Cavitation in Liquid Cryogens. II. Hydrofoil. In NASA CR-2156 (157 p).

    Google Scholar 

  • Hord, J. (1973b). Cavitation in Liquid Cryogens. III. Ogives. In NASA CR-2242 (235 pp).

    Google Scholar 

  • Hord, J., (1974). Cavitation in Liquid Cryogens, Volume IV—Combined Correlations for Venturi, Hydrofoil, Ogives and Pumps. In NASA CR-2448.

    Google Scholar 

  • Jakobsen, J. K. (1964). On the mechanism of head breakdown in cavitating inducers. ASME Journal of Basic Engineering, 86, 291–304.

    Google Scholar 

  • Jeager, C. (1963). The theory of resonance in hydropower systems: Discussion of incidents and accidents occurring in pressure systems. ASME Journal of Basic Engineering, 85, 631–640.

    Google Scholar 

  • Kamijo, K., Shimura, T., Watanabe, M. (1977). Experimental Investigation of Cavitating Inducer Instability.

    Google Scholar 

  • Kimball, A. L., Jr. (1924). Internal friction theory of shaft whirling. General Electric Review, 27, 244–251.

    Google Scholar 

  • Knapp, R. T., Daily, J. W., & Hammit, F. G. (1970). Cavitation. New York: McGraw-Hill.

    Google Scholar 

  • Lund, J. W. (1974). Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings. ASME Journal of Engineering for Industry, 509–517.

    Google Scholar 

  • Matsushita, O., et al. (1982). Rotor vibration caused by external excitation and rub. In 2nd Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, Texas.

    Google Scholar 

  • Moore, R. D., & Ruggeri, R. S. (1968). Predictions of Thermodynamic Effects of Developed Cavitation Based on Liquid Hydrogen and Freon 114 Data in Scaled Venturis. NASA TN D-4899.

    Google Scholar 

  • Moore, R. D. (1974). Prediction of pump cavitation performance. In B. Lakshminarayana, W. R. Britsch & W. S. Gearhart (Eds.), Symposium on Fluid Mechanics, Acoustics and Design of Turbomachinery—Part II, NASA SP-304 (pp. 733–755).

    Google Scholar 

  • Mori, Y., Hijikata, K., & Nagatani, T. (1977). Fundamental Study of Bubble Dissolution in Liquid. International Journal of Heat and Mass Transfer, 20, 41–50.

    Google Scholar 

  • Murphy, G. L. (1969). Pogo Suppression Analysis of the S-11 and S-IVB LOX Feed Systems. Summary Report ASD-ASTN-1040, Brown Engineering Co., Huntsville, AL, USA.

    Google Scholar 

  • Ng, S. L. (1976). Dynamic Response of Cavitating Turbomachines. PhD thesis, California Institute of Technology, Pasadena, CA, USA.

    Google Scholar 

  • Ng, S. L., Brennen, C. E., and Acosta, A.J. (1976). The Dynamics of Cavitating Inducer Pumps. In Conference on Two-Phase Flow and Cavitation, Grenoble, France.

    Google Scholar 

  • Ng, S. L., & Brennen, C. E. (1978). Experiments on the dynamic behavior of cavitating pumps. ASME Journal of Fluids Engineering, 100, 166–176.

    Google Scholar 

  • O’Hern, T. J., d’Agostino, L., & Acosta, A. J. (1988). Comparison of holographic and coulter counter measurements of cavitation nuclei in the ocean. ASME Journal of Fluids Engineering, 110, 200–207.

    Google Scholar 

  • Pace, G., Valentini, D., Pasini, A., Torre, L., Fu, X., & d’Agostino, L. (2015). Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers. ASME Journal of Fluids Engineering, 137(4)/011102-1, 041304.

    Google Scholar 

  • Pasini, A., Torre, L., Cervone, A., & d’Agostino, L. (2011a). Characterization of the rotordynamic forces on tapered axial inducers by means of a rotating dynamometer and high-speed movies. In Proceedings of WIMRC 3rd International Cavitation Forum 2011, University of Warwick, United Kingdom.

    Google Scholar 

  • Pasini, A., Torre, L., Cervone, A., & d’Agostino, L. (2011b). Continuous spectrum of the rotordynamic forces on a four-bladed inducer. ASME Journal of Fluids Engineering, 133(12).

    Google Scholar 

  • Pearsall, L. S. (1972). Cavitation. London: Mills & Boon.

    Google Scholar 

  • Pearson, H., & Bowmer, T. (1949). Surging of axial compressors. Aeronautical Quarterly, I, 195–210.

    Article  Google Scholar 

  • Plesset, M. S. (1957). Physical effects in cavitation and boiling. In Proceedings of 1st Symposium on Naval Hydrodynamics (pp. 297–323), Washington, D.C., USA.

    Google Scholar 

  • Plesset, M. S. (1969). The tensile strength of liquids. In ASME Fluids Engineering and Applied Mechanics Conference, (pp. 15–25), Evanston, Illinois.

    Google Scholar 

  • Plesset, M. S., & Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145–185.

    Google Scholar 

  • Plesset, M. S., & Zwick, S. A. (1954). The growth of vapor bubbles in superheated liquids. Journal of Applied Physics, 5(4), 493–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenmann, W. (1965). Experimental Investigations of Hydrodynamically Induced Shaft Forces With a Three Bladed Inducer. In Proceedings of ASME Symposium on Cavitation in Fluid Machinery.

    Google Scholar 

  • Rubin, S. (1966). Longitudinal instability of liquid rockets due to propulsion feedback (POGO). Journal of Spacecraft and Rockets, 3(8), 1188–1195.

    Article  Google Scholar 

  • Ruggeri, R. S., & Moore, R. D. (1969). Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures and Rotative Speeds. In NASA TN D-5292, Washington, D.C., USA.

    Google Scholar 

  • Sack, L. E., & Nottage, H. B. (1965). System oscillations associated to cavitating inducers. ASME Journal of Basic Engineering, 87, 917–924.

    Google Scholar 

  • Salemann, V. (1959). Cavitation and NPSH requirements of various liquids. ASME Journal of Basic Engineering, 81, 167–180.

    Google Scholar 

  • Sarosdy, C. R., & Acosta, A. J. (1961). Note on observations of cavitation in different fluids. ASME Journal of Basic Engineering, 3, pp. 399–400.

    Google Scholar 

  • Stahl, H. A., & Stepanoff, A. J. (1956). Thermodynamic aspects of cavitation on centrifugal pumps. ASME Transactions, 78, 1691–1693.

    Google Scholar 

  • Stepanoff, A. J. (1948). Centrifugal and axial pumps; theory, design and application. Wiley.

    Google Scholar 

  • Stepanoff, A. J. (1961). Cavitation in centrifugal pumps with liquids other than water. ASME Transactions, Series A, Journal of Engineering for Power, 83(1), 79–90.

    Google Scholar 

  • Stepanoff, A. J. (1964). Cavitation properties of liquids. ASME Journal of Engineering for Power, 86, 195–200.

    Google Scholar 

  • Stripling, L. B. (1962). Cavitation in turbopumps, part 2. ASME Journal of Basic Engineering, 84(3), 329.

    Google Scholar 

  • Stripling, L. B., & Acosta, A. J. (1962). Cavitation in turbopumps—part 1. ASME Journal Basic Engineering, 84, 326–338.

    Google Scholar 

  • Taylor, W. E., et al. (1969). Systematic Two-Dimensional Cascade Tests, Volume I—Double Circular Arc Hydrofoil. In NASA CR-72498.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., Pecorari, L., Milani, A., & d’Agostino, L. (2010). Rotordynamic forces on a three bladed inducer. In Proceedings of Space Propulsion Conference, San Sebastian, Spain.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., & d’Agostino, L. (2011a). Continuous spectrum of the rotordynamic forces on a four-bladed inducer. In ASME/JSME/KSME Joint Fluids Engineering Conference, Hamamatsu, Japan.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., & d’Agostino, L. (2011b). Experimental Characterization of the Rotordynamic Forces on Space Rocket Axial Inducers. ASME Journal of Fluids Engineering, 133(10).

    Google Scholar 

  • Torre, L., Cervone, A., Pasini, A., & d’Agostino, L. (2011c). Experimental characterization of thermal cavitation effects on space rocket axial inducers. ASME Journal of Fluids Engineering, 133(11).

    Google Scholar 

  • Vaage, R. D., et al. (1972). Investigation of Characteristics of Feed System Instabilities. Final Report MCR-72-107, Martin Marietta Corporation, Denver, CO, USA.

    Google Scholar 

  • Valentini, D., Pace, G., Pasini, A., Torre, L., & d’Agostino, L. (2015). Influences of the operating conditions on the rotordynamic forces acting on a three-bladed inducer under forced whirl motion. Journal of Fluids Engineering, 137(7), 071304.

    Google Scholar 

  • Wachel, J. C., & Szenasi, F. R. (1980). Field verification of lateral-torsional coupling effects on rotor instability in centrifugal compressors. In 1st Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, TX, USA.

    Google Scholar 

  • Wagner, R. G. (1971). Titan II Engine Transfer Function Test Results. Report No. TOR-0059 (6471)-9, Aerospace Corporation, El Segundo, CA, USA.

    Google Scholar 

  • Young, W. E., et al. (1972). Study of Cavitating Inducer Instabilities. Pratt and Whitney Report PWA FR-5131.

    Google Scholar 

  • Zielke, W., et al. (1969). Forced and self-excited oscillations in propellant lines. ASME Journal of Basic Engineering, 91, 671–677.

    Google Scholar 

  • Zika, V. J. (1984). Correlation of cavitating centrifugal pumps. ASME Journal of Fluids Engineering, 106, 141–146.

    Google Scholar 

  • Zoladz, T. (2000). Observations on rotating cavitation and cavitation surge from the development of the fastrac engine turbopump. In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, USA.

    Google Scholar 

  • Zwick, S. A., & Plesset, M. S. (1955). On the dynamics of small vapor bubbles in liquids. Journal of Mathematics and Physics, 33, 308–330.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca d’Agostino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

d’Agostino, L., Torre, L., Cervone, A., Pace, G., Valentini, D., Pasini, A. (2017). An Introduction to Cavitation in Inducers and Turbopumps. In: d'Agostino, L., Salvetti, M. (eds) Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines. CISM International Centre for Mechanical Sciences, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-49719-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49719-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49717-4

  • Online ISBN: 978-3-319-49719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics