Skip to main content

The Finite Cell Method: A Higher Order Fictitious Domain Approach for Wave Propagation Analysis in Heterogeneous Structures

  • Chapter
  • First Online:
Lamb-Wave Based Structural Health Monitoring in Polymer Composites

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

In this chapter a recently developed novel approach to simulate the propagation of ultrasonic guided waves in heterogeneous, especially cellular lightweight structures is presented. One of the most important drawbacks of traditional finite element-based approaches is the need for a geometry-conforming discretization. It is generally acknowledged that the mesh generation process constitutes the bottleneck in the current simulation pipeline. Therefore, different measures have been taken to at least alleviate the meshing bruden. One of these attempts is the finite cell method (FCM). It combines the advantages known from higher order finite element methods (FEM; exponential convergence rates) with those of fictitious domain methods (FDM; automatic mesh generation using Cartesian grids). In the framework of the FCM we do not rely on body-fitted discretizations and therefore shift the effort typically required for the mesh generation to the numerical integration of the system matrices which is performed by means of an adaptive Gaussian quadrature. The advantage of such a procedure in the context of wave propagation analysis is seen in the fully automated analysis process. Consequently, hardly any user input is required making the simulation very robust. Notwithstanding, it can be mathematically proven that the optimal rates of convergence are retained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J 2 flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  MATH  Google Scholar 

  2. Abedian A, Parvizian J, Düster A, Rank E (2014) The FCM compared to the h-version FEM for elasto-plastic problems. Appl Math Mech 35:1239–1248

    Article  Google Scholar 

  3. Almeida JPM, Pereira OJBA (1996) A set of hybrid equilibrium finite element models for the analysis of three-dimensional solids. Int J Numer Methods Eng 39:2789–2802

    Article  MATH  Google Scholar 

  4. Belytschko T, Chen JS (2009) Meshfree and particle methods. Wiley, Chichester

    Google Scholar 

  5. Blyth MG, Pozrikidis C (2006) A Lobatto interpolation grid over the triangle. IMA J Appl Math 71:153–169

    Article  MathSciNet  MATH  Google Scholar 

  6. Cattani C, Paoluzzi A (1990) Boundary integration over linear polyhedra. Comput Aided Des 22:130–135

    Article  MATH  Google Scholar 

  7. Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  Google Scholar 

  9. Dasgupta G (2003) Integration within polygonal finite elements. J Aerosp Eng 16:9–18

    Article  Google Scholar 

  10. Dauge M, Düster A, Rank E (2015) Theoretical and numerical investigation of the finite cell method. J Sci Comput 65:1039–1064

    Article  MathSciNet  MATH  Google Scholar 

  11. Duarte C, Babuška I, Oden J (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  MathSciNet  Google Scholar 

  12. Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 Nr. 458

    Google Scholar 

  13. Duczek S, Gabbert U (2015) Efficient integration method for fictitious domain approaches. Comput Mech 56:725–738

    Article  MathSciNet  MATH  Google Scholar 

  14. Duczek S, Gabbert U (2016) The finite cell method for polygonal meshes: polygonal-FCM. Comput Mech 58:587–618

    Article  MathSciNet  MATH  Google Scholar 

  15. Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of Lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng 99:26–53

    Article  MathSciNet  MATH  Google Scholar 

  16. Duczek S, Liefold S, Gabbert U (2015) The finite and spectral cell methods for smart structure applications: transient analysis. Acta Mech 226:845–869

    Article  MathSciNet  MATH  Google Scholar 

  17. Duczek S, Duvigneau F, Gabbert U (2016) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 121:18–32

    Article  MathSciNet  Google Scholar 

  18. Dumonet D (2014) Towards efficient and accurate 3d cut cell integration in the context of the finite cell method. Master’s thesis, Technical University Munich

    Google Scholar 

  19. Düster A, Niggl A, Rank E (2007) Applying the hp-d version of the FEM to locally enhance dimensionally reduced models. Comput Methods Appl Mech Eng 196:3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  20. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  21. Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19

    MathSciNet  MATH  Google Scholar 

  22. Gao XW (2002) The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng Anal Bound Elem 26:905–916

    Article  MATH  Google Scholar 

  23. Gonzales-Ochoa C, McCammon S, Peters J (1998) Computing moments of objects enclosed by piecewise polynomial surfaces. ACM Trans Graph 17:143–157

    Article  Google Scholar 

  24. Hematiyan MR (2007) A general method for evaluation of 2d and 3d domain integrals without domain discretization and its application in BEM. Comput Mech 39:509–520

    Article  MATH  Google Scholar 

  25. Hubrich S, Joulaian M, Düster A (2015) Numerical integration in the finite cell method based on moment-fitting. In: Proceedings of the 3rd ECCOMAS young investigators conference and 6th GACM colloquium – YIC GACM 2015

    Google Scholar 

  26. Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762

    Article  MATH  Google Scholar 

  27. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54:661–675

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaufmann P, Martin S, Botsch M, Gross M (2009) Flexible simulation of deformable models using discontinuous Galerkin FEM. Graph Model 71:153–167

    Article  Google Scholar 

  29. Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation I. – Validation. Int J Geophys 149:390–412

    Article  Google Scholar 

  30. Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation II. – Three-dimensional models, oceans, rotation and self-gravitation. Int J Geophys 150:303–318

    Article  Google Scholar 

  31. Kudela L (2013) Highly accurate subcell integration in the context of the finite cell method. Master’s thesis, Technical University Munich

    Google Scholar 

  32. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2–10:1–22

    Google Scholar 

  33. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1–34

    Article  Google Scholar 

  34. Luo H, Pozrikidis C (2006) A Lobatto interpolation grid in the tetrahedron. IMA J Appl Math 71:298–313

    Article  MathSciNet  MATH  Google Scholar 

  35. Mirtich B (1996) Fast and accurate computation of polyhedral mass properties. J Graph Tools 1:31–50

    Article  Google Scholar 

  36. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 64:131–150

    Article  MATH  Google Scholar 

  37. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554

    Article  MathSciNet  MATH  Google Scholar 

  38. Mousavi SE, Xiao H, Sukumar N (2010) Generalized Gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82:99–113

    MathSciNet  MATH  Google Scholar 

  39. Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int J Numer Methods Eng 96:512–528

    Article  MathSciNet  MATH  Google Scholar 

  40. Ostachowicz W, Kudela P, Krawczuk M, \(\dot{\text{Z}}\) ak A (2011) Guided waves in structures for SHM: the time-domain spectral element method. Wiley, Hoboken

    Google Scholar 

  41. Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  MATH  Google Scholar 

  42. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13:57–78

    Article  MathSciNet  MATH  Google Scholar 

  43. Patera AT (1984) A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  44. Persson PO (2005) Mesh generation for implicit geometries. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  45. Pozrikidis C (2005) Introduction to finite and spectral methods using MATLAB. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

  46. Ranjbar M, Mashayekhi M, Parvizian J, Düster A, Rank E (2014) Using the finite cell method to predict crack initiation in ductile materials. Comput Mater Sci 82:427–434

    Article  Google Scholar 

  47. Rathod HT, Govinda Rao HS (1995) Integration of polynomials over linear polyhedra in Euclidean three-dimensional space. Comput Methods Appl Mech Eng 126:373–392

    Article  MathSciNet  MATH  Google Scholar 

  48. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11:425–437

    Article  Google Scholar 

  49. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95:811–846

    Article  MathSciNet  MATH  Google Scholar 

  50. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of high-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455

    Article  MathSciNet  MATH  Google Scholar 

  51. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202

    Article  MathSciNet  MATH  Google Scholar 

  52. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MathSciNet  MATH  Google Scholar 

  53. Schillinger D, Cai Q, Mundani RP, Rank E (2013) A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-Based Geometric Models. In: Advanced computing lecture notes in computational science and engineering, vol 93. Springer, Dordrecht, pp 1–23

    Google Scholar 

  54. Sehlhorst HG (2011) Numerical homogenization strategies for cellular materials with applications in structural mechanics. VDI Fortschritt-Berichte Reihe 18 Nr. 333

    Google Scholar 

  55. Sommariva A, Vianello M (2007) Product Gauss cubature over polygons based on Green’s integration formula. BIT Numer Math 47:441–453

    Article  MathSciNet  MATH  Google Scholar 

  56. Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415

    Article  MATH  Google Scholar 

  57. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  58. Szabó B, Babuška I (2011) Introduction to finite element analysis: formulation, verification and validation. Wiley, New York

    Book  MATH  Google Scholar 

  59. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45:309–328

    Article  MathSciNet  MATH  Google Scholar 

  60. Trimmer HG, Stern JM (1980) Computation of global geometric properties of solid objects. Comput Aided Des 12:301–304

    Article  Google Scholar 

  61. Varduhn V, Hsu MC, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: high-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng online:1–26

    Google Scholar 

  62. Verhoosel CV, van Zwieten G J, van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  MathSciNet  Google Scholar 

  63. Wassermann B, Kollmannsberger S, Bog T, Rank E (2017) From geometric design to numerical analysis: a direct approach using the finite cell method on constructive solid geometry. Comput Math Appl 24. doi:https://doi.org/10.1016/j.camwa.2017.01.027 [Online]

  64. Wassouf Z (2010) Die Mortar Methode für Finite Elemente hoher Ordnung. PhD thesis, Technical University Munich

    Google Scholar 

  65. Wenisch P, Wenisch O (2004) Fast octree-based voxelization of 3d boundary representation-objects. Tech. rep., Technical University Munich

    Google Scholar 

  66. Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu MC (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids online:1–20

    Google Scholar 

  67. Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD thesis, Technical University Munich

    Google Scholar 

  68. Yang Z, Kollmannsberger S, Düster A, Ruess M, Grande Garcia E, Burgkart R, Rank E (2011) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  MathSciNet  Google Scholar 

  69. Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471

    Article  Google Scholar 

  70. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64:3527–3541

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Duczek or U. Gabbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Duczek, S., Gabbert, U. (2018). The Finite Cell Method: A Higher Order Fictitious Domain Approach for Wave Propagation Analysis in Heterogeneous Structures. In: Lammering, R., Gabbert, U., Sinapius, M., Schuster, T., Wierach, P. (eds) Lamb-Wave Based Structural Health Monitoring in Polymer Composites. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-319-49715-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49715-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49714-3

  • Online ISBN: 978-3-319-49715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics