Skip to main content

Damping Boundary Conditions for a Reduced Solution Domain Size and Effective Numerical Analysis of Heterogeneous Waveguides

  • Chapter
  • First Online:
Lamb-Wave Based Structural Health Monitoring in Polymer Composites

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

In the current chapter we focus on the development of numerical methods to reduce the computational effort of finite element (FE)-based wave propagation analysis and to enable the modelling of heterogeneous cellular structures. To this end, we take two different approaches: (1) implementation of damping boundary conditions to reduce the solution domain, and (2) development of methodologies to approximately capture the heterogeneities of cellular sandwich materials. The main advantage of our approach is seen in the fact that it can be implemented in commercial FE software in a straightforward fashion. Using these approaches we can study the interaction of guided waves with heterogeneous and cellular microstructures with a significantly reduced numerical effort. By means of parametric studies we then extract important variables that influence the behavior of elastic waves in sandwich panels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad ZAB (2011) Numerical simulation of Lamb waves in plates using a semi-analytical finite element method. VDI Fortschritt-Berichte Reihe 20 Nr. 437

    Google Scholar 

  2. Alpert B, Greengard L, Hagstrom T (2002) Nonreflecting boundary conditions for the time-dependent wave equation. J Comput Phys 180:270–296

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurenhammer F, Klein R (1999) Voronoi diagrams. Technical Report, Technical University of Graz & FernUni Hagen

    MATH  Google Scholar 

  4. Balendra S (2005) Numerical modeling of dynamic soil-pile-structure interaction. Master’s Thesis, Washington State University, Department of Civil and Environmental Engineering

    Google Scholar 

  5. Barton R, Carter FWS, Roberts TA (1974) Use of reticulated metal foam as flash-back arrestor elements. Chem Eng J 291:708

    Google Scholar 

  6. Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray H (1972) Design opportunities with metal foam. Eng Mater Des 16:16–19

    Google Scholar 

  8. Drozdz M, Moreau L, Castaings M, Lowe MJS, Cawley P (2006) Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. In: AIP conference proceedings, vol 820, p 126

    Google Scholar 

  9. Fiedler T (2008) Numerical and experimental investigation of hollow sphere structures in sandwich panels. Trans Tech Publications, Zurich

    Google Scholar 

  10. Hosseini SMH (2013) Ultrasonic guided wave propagation in cellular sandwich panels for structural health monitoring. VDI Fortschritt-Berichte Reihe 20 Nr. 456

    Google Scholar 

  11. Hosseini SMH, Gabbert U (2013) Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: a parametric study. Compos Struct 97:189–201

    Article  Google Scholar 

  12. Hosseini SMH, Duczek S, Gabbert U (2013) Non-reflecting boundary condition for Lamb wave propagation problems in honeycomb and CFRP plates using dashpot elements. Compos Part B 54:1–10

    Article  Google Scholar 

  13. Hosseini SMH, Kharaghani A, Kirsch C, Gabbert U (2013) Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study. Compos Struct 97:387–400

    Article  Google Scholar 

  14. Hosseini SMH, Duczek S, Gabbert U (2014) Damage localization in plates using mode conversion characteristics of ultrasonic guided waves. J Nondestruct Eval 33:152–165

    Google Scholar 

  15. Kohr T, Petersson BAT (2009) Wave beaming and wave propagation in lightweight plates with truss-like cores. J Sound Vib 321:137–165

    Article  Google Scholar 

  16. Krez R, Hombergsmeier E, Eipper K (1999) Manufacturing and testing of aluminium foam structural parts for passenger cars demonstrated by example of a rear intermediate panel. In: Proceedings metal foams and porous structures

    Google Scholar 

  17. Liu GR, Jerry SQ (2003) A non-reflecting boundary for analyzing wave propagation using the finite element method. Finite Elem Anal Des 39:403–417

    Article  Google Scholar 

  18. Lysmer J, Kuhlemeyer R (1969) Finite dynamic model for infinite media. J Eng Mech Div 95:859–877

    Google Scholar 

  19. Moser F, Laurence JJ, Qu J (1999) Modeling elastic wave propagation in waveguides with finite element method. NDT & E Int 32:225–234

    Article  Google Scholar 

  20. Mustapha S, Ye L, Wang D, Lu Y (2011) Assessment of debonding in sandwich CF/EP composite beams using A 0 Lamb. Compos Struct 93:483–491

    Article  Google Scholar 

  21. Oh T, Popovics JS, Ham S, Shin S (2012) Practical finite element based simulations of nondestructive evaluation methods for concrete. Comput Struct 98–99:55–65

    Article  Google Scholar 

  22. Paget CA (2001) Active health monitoring of aerospace composite structures by embedded piezoceramic transducers. Ph.D. Thesis, Department of Aeronautics Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  23. Qi X, Rose JL, Xu C (2008) Ultrasonic guided wave nondestructive testing for helicopter rotor blades. In: 17th world conference on nondestructive testing, Shanghai, China

    Google Scholar 

  24. Raghavan A, Cesnik C (2005) Lamb-wave based structural health monitoring. Damage prognosis: for aerospace, civil and mechanical systems. Wiley, New York, pp 235–258

    Google Scholar 

  25. Ruzzene M, Scarpa F, Soranna F (2003) Wave beaming effects in two-dimensional cellular structures. Smart Mater Struct 12:363–372

    Article  Google Scholar 

  26. Sim I (2010) Nonreflecting boundary conditions for time-dependent wave propagation. Ph.D. Thesis, Faculty of Science, University of Basel, Switzerland

    Google Scholar 

  27. Song F, Huang G, Kim J, Haran S (2008) On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system. Smart Mater Struct 17:55024–55032

    Article  Google Scholar 

  28. Song F, Huang GL, Hudson K (2009) Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system. Smart Mater Struct 18:125007–125015

    Article  Google Scholar 

  29. Suranat K (1980) Transition finite elements for three-dimensional stress analysis. Int J Numer Methods Eng 15:991–1020

    Article  Google Scholar 

  30. Terrien N, Osmont D (2009) Damage detection in foam core sandwich structures using guided waves. In: Leger A, Deschamps M (ed) Ultrasonic wave propagation in non homogeneous media. Springer proceedings in physics, vol 128, Springer, Berlin, pp 251–260

    Google Scholar 

  31. Thompson L (2006) A review of finite element methods for time-harmonic acoustics. J Acoust Soc Am 119:1315–1330

    Article  Google Scholar 

  32. Thwaites S, Clarck NH (1995) Non-destructive testing of honeycomb sandwich structures using elastic waves. J Sound Vib 187(2):253–269

    Article  Google Scholar 

  33. Wang L, Yuan F (2007) Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments. Compos Sci Technol 67:1370–1384

    Article  Google Scholar 

  34. Weber R (2011) Numerical simulation of the guided Lamb wave propagation in particle reinforced composites excited by piezoelectric patch actuators. Master’s Thesis, Institute of Numerical Mechanics, Department of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Germany

    Google Scholar 

  35. Weber R, Hosseini SMH, Gabbert U (2012) Numerical simulation of the guided Lamb wave propagation in particle reinforced composites. Compos Struct 94:3064–3071

    Article  Google Scholar 

  36. Wierzbicki E, Woźniak C (2000) On the dynamic behavior of honeycomb based composite solids. Acta Mech 141:161–172

    Article  MATH  Google Scholar 

  37. Willberg C, Duczek S, Vivar Perez JM, Schmicker D, Gabbert U (2012) Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput Methods Appl Mech Eng 241–244:246–261

    Article  MATH  Google Scholar 

  38. Willberg C, Mook G, Gabbert U, Pohl J (2012) The phenomenon of continuous mode conversion of Lamb waves in CFRP plates. Key Eng Mater 518:364–374

    Article  Google Scholar 

  39. Yoshimura H, Shinagawa K, Sukegawa Y, Murakami K (2005) Metallic hollow sphere structures bonded by adhesion. In: The 4th international conference on porous metals and metal foaming technology

    Google Scholar 

  40. Zhu HX, Hobdell JR, Windle AH (2000) Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater 48(20):4893–4900

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Duczek or U. Gabbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Duczek, S., Hosseini, S.M.H., Gabbert, U. (2018). Damping Boundary Conditions for a Reduced Solution Domain Size and Effective Numerical Analysis of Heterogeneous Waveguides. In: Lammering, R., Gabbert, U., Sinapius, M., Schuster, T., Wierach, P. (eds) Lamb-Wave Based Structural Health Monitoring in Polymer Composites. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-319-49715-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49715-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49714-3

  • Online ISBN: 978-3-319-49715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics