Advertisement

Higher Order Finite Element Methods

  • S. DuczekEmail author
  • C. Willberg
  • U. GabbertEmail author
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

The efficiency of numerical methods for wave propagation analysis is essential, as very fine spatial and temporal resolutions are required in order to properly describe all the phenomena of interest, such as scattering, reflection, mode conversion, and many more. These strict demands originate from the fact that high-frequency ultrasonic guided waves are investigated. In the current chapter, we focus on the finite element method (FEM) based on higher order basis functions and demonstrate its range of applicability. Thereby, we discuss the p-FEM, the spectral element method (SEM), and the isogeometric analysis (IGA). Additionally, convergence studies demonstrate the performance of the different higher order approaches with respect to wave propagation problems. The results illustrate that higher order methods are an effective numerical tool to decrease the numerical costs and to increase the accuracy. Furthermore, we can conclude that FE-based methods are principally able to tackle all wave propagation-related problems, but they are not necessarily the most efficient choice in all situations.

References

  1. 1.
    Ahmad ZAB (2011) Numerical simulation of Lamb waves in plates using a semi-analytical finite element method. VDI Fortschritt-Berichte Reihe 20, Nr. 437Google Scholar
  2. 2.
    Ahmad ZAB, Gabbert U (2012) Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. Ultrasonics 52:815–820CrossRefGoogle Scholar
  3. 3.
    Ainsworth M, Wajid HA (2010) Dispersive and dissipative behavior of the spectral element method. SIAM J Numer Anal 47:3910–3937MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ainsworth M, Wajid HA (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J Numer Anal 48:346–371MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Natarajan A, Hansen MH (2013) DTU Wind Energy Report-I-0092: description of the DTU 10 MW reference wind turbine. Tech. rep., DTU Wind EnergyGoogle Scholar
  6. 6.
    Bartoli I, Scalea F, Fateh M, Viola E (2005) Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT & E Int 38:325–334CrossRefGoogle Scholar
  7. 7.
    Becker C (2007) Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse (Finite element methods for the spatial discretization of multi-field problems in structural mechanics: extension to discrete cracks). PhD thesis, Ruhr-University BochumGoogle Scholar
  8. 8.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, HobokenCrossRefGoogle Scholar
  9. 9.
    Dauksher W, Emery AF (1997) Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements. Finite Elem Anal Des 26:115–128CrossRefzbMATHGoogle Scholar
  10. 10.
    Dauksher W, Emery AF (1999) An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation. Int J Numer Methods Eng 45: 1099–1113CrossRefzbMATHGoogle Scholar
  11. 11.
    Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217–233CrossRefzbMATHGoogle Scholar
  12. 12.
    Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20, Nr. 458Google Scholar
  13. 13.
    Duczek S, Gabbert U (2013) Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures. Eng Comput 30:682–706CrossRefGoogle Scholar
  14. 14.
    Duczek S, Willberg C, Schmicker D, Gabbert U (2012) Development, validation and comparison of higher order finite element approaches to compute the propagation of Lamb waves efficiently. Key Eng Mater 518:95–105CrossRefzbMATHGoogle Scholar
  15. 15.
    Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Technical University MunichGoogle Scholar
  16. 16.
    Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703CrossRefzbMATHGoogle Scholar
  17. 17.
    Giurgiutiu V (2008) Structural health monitoring with piezoelectric active wafer sensors: fundamentals and applications, 1st edn. Elsevier, WalthamGoogle Scholar
  18. 18.
    Gravenkamp H (2014) Numerical methods for the simulation of ultrasonic guided waves. Dissertationsreihe, vol 116, BAM-BerlinGoogle Scholar
  19. 19.
    Ha S, Chang FK (2010) Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates. Smart Mater Struct 19:1–11Google Scholar
  20. 20.
    Hosseini SMH (2013) Ultrasonic guided wave propagation in cellular sandwich panels for structural health monitoring. VDI Fortschritt-Berichte Reihe 20, Nr. 456Google Scholar
  21. 21.
    Huang CH, Lin YC, Ma CC (2004) Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates. IEEE Trans Ultrason Ferroelectr Freq Control 51(1):12–24CrossRefGoogle Scholar
  22. 22.
    Huang H, Pamphile T, Derriso M (2008) The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch. Smart Mater Struct 17:13–25Google Scholar
  23. 23.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput Methods Appl Mech Eng 272:290–320MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jensen MS (1996) High convergence order finite elements with lumped mass matrix. Int J Numer Methods Eng 39:1879–1888CrossRefzbMATHGoogle Scholar
  26. 26.
    Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54:661–675MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Karniadakis GE, Sherwin SJ (2005) Spectral/hp element methods for computational fluid dynamics. Oxford Science Publications, OxfordCrossRefzbMATHGoogle Scholar
  28. 28.
    Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139:806–822CrossRefGoogle Scholar
  29. 29.
    Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation I. - Validation. Int J Geophys 149:390–412CrossRefGoogle Scholar
  30. 30.
    Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sánchez-Sesma FJ (1999) The spectral element method for elastic wave equations - application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164CrossRefzbMATHGoogle Scholar
  31. 31.
    Kudela P, Ostachowicz W (2009) 3D time-domain spectral elements for stress waves modelling. J Phys Conf Ser 181:1–8CrossRefGoogle Scholar
  32. 32.
    Kudela P, \(\dot{\text{Z}}\) ak A, Krawczuk M, Ostachowicz W (2007) Modelling of wave propagation in composite plates using the time domain spectral element method. J Sound Vib 302:728–745Google Scholar
  33. 33.
    Mirbagheri Y, Nahvi H, Parvizian J, Düster A (2015) Reducing spurious oscillations in discontinuous wave propagation simulation using high-order finite elements. Comput Math Appl 70:1640–1658MathSciNetCrossRefGoogle Scholar
  34. 34.
    Moser F, Laurence JJ, Qu J (1999) Modeling elastic wave propagation in waveguides with finite element method. NDT & E Int 32:225–234CrossRefGoogle Scholar
  35. 35.
    Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488CrossRefzbMATHGoogle Scholar
  36. 36.
    Peng H, Ye L, Meng G, Mustapha S, Li F (2010) Concise analysis of wave propagation using the spectral element method and identification of delamination in cf/ep composite beams. Smart Mater Struct 19:1–11Google Scholar
  37. 37.
    Piefort V (2001) Finite element modelling of piezoelectric active structures. PhD thesis, University of BrusselsGoogle Scholar
  38. 38.
    Piegl L, Tiller W (1995) The NURBS book. Springer, BerlinCrossRefzbMATHGoogle Scholar
  39. 39.
    Pohl J, Willberg C, Gabbert U, Mook G (2012) Experimental and theoretical analysis of Lamb wave generation by piezoceramic actuators for structural health monitoring. Exp Mech 52: 429–438CrossRefGoogle Scholar
  40. 40.
    Pozrikidis C (2005) Introduction to finite and spectral methods using MATLAB. Chapman and Hall, Boca RatonzbMATHGoogle Scholar
  41. 41.
    Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD thesis, Technical University MunichGoogle Scholar
  42. 42.
    Schmicker D, Duczek S, Liefold S, Gabbert U (2014) Wave propagation analysis using high-order finite element methods: spurious oscillations excited by internal element eigenfrequencies. Tech Mech 34:51–71Google Scholar
  43. 43.
    Schulte RT (2010) Modellierung und simulation von wellenbasierten structural health monitoring - systemen mit der spektral-elemente methode. PhD thesis, University of SiegenGoogle Scholar
  44. 44.
    Schulte RT, Fritzen CP (2011) Simulation of wave propagation in damped composite structures with piezoelectric coupling. J Theor Appl Mech 49:879–903Google Scholar
  45. 45.
    Schulte RT, Fritzen CP, Moll J (2010) Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage. IOP Conf Ser Mater Sci Eng 10:1–10CrossRefGoogle Scholar
  46. 46.
    Seriani G (1998) 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor. Comput Methods Appl Mech Eng 164:235–247CrossRefzbMATHGoogle Scholar
  47. 47.
    Seriani G, Priolo E (1994) Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem Anal Des 16:337–348MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Solin P, Segeth K, Dolezel I (2004) Higher-order finite element methods. Chapman and Hall, Boca RatonzbMATHGoogle Scholar
  49. 49.
    Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York/Chichester/Brisbane/ Toronto/SingaporezbMATHGoogle Scholar
  50. 50.
    Szabó B, Babuška I (2011) Introduction to finite element analysis: formulation, verification and validation. Wiley, New York/Chichester/Brisbane/Toronto/SingaporeCrossRefzbMATHGoogle Scholar
  51. 51.
    Thompson LL, Pinsky PM (1994) Complex wavenumber Fourier analysis of the p-version finite element method. Comput Mech 13:255–275MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Vivar-Perez JM (2012) Analytical and spectral methods for the simulation of elastic waves in thin plates. VDI Fortschritt-Berichte Reihe 20, Nr. 441Google Scholar
  53. 53.
    Willberg C (2013) Development of a new isogeometric finite element and its application for Lamb wave based structural health monitoring. VDI Fortschritt-Berichte Reihe 20, Nr. 446Google Scholar
  54. 54.
    Willberg C, Gabbert U (2012) Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications. Acta Mech 223:1837–1850MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Willberg C, Duczek S, Vivar Perez JM, Schmicker D, Gabbert U (2012) Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput Methods Appl Mech Eng 241–244:246–261CrossRefzbMATHGoogle Scholar
  56. 56.
    Żak A, Krawczuk M (2011) Certain numerical issues of wave propagation modelling in rods by the spectral finite element method. Finite Elem Anal Des 47:1036–1046CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations