Fundamental Principles of the Finite Element Method

  • S. DuczekEmail author
  • U. GabbertEmail author
Part of the Research Topics in Aerospace book series (RTA)


In the current chapter, we derive and discuss the fundamental principles of the finite element method (FEM). Therefore, the governing and constitutive equations are briefly recalled. By means of the method of weighted residuals (MWR), we convert the strong form of the equilibrium equations into the weak form. In the book at hand, wave-based structural health monitoring (SHM) approaches are investigated for thin-walled elastic structures that are augmented with a network of piezoelectric transducers. Consequently, the governing equations have to consider the coupled electromechanical relations. Since the fundamental idea of the FEM is the subdivision of the computational domain into small entities, the so-called finite elements, the discretized version of weak form is derived in the next step. To solve the semi-discrete equations of motion, we introduce two different time-integration methods that are used throughout the chapter. In conjunction with suitable mass lumping techniques, highly efficient numerical methods are generated. Finally, we also briefly mention different mapping concepts that are commonly used to approximate the physical geometry by means of the elemental shape functions. The basic ideas being discussed in this chapter are later also applicable to other, highly efficient numerical methods that are FE-based.


  1. 1.
    Babuška I, Suri M (1990) The p- and h-p versions of the finite element method, an overview. Comput Methods Appl Mech Eng 80:5–26MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuška I, Szabó BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18:515–545MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bathe KJ (2007) Finite element procedures. Prentice Hall, Princeton, NJzbMATHGoogle Scholar
  4. 4.
    Becker C (2007) Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse (Engl.: Finite element methods for the spatial discretization of multi-field problems in structural mechanics: extension to discrete cracks). PhD thesis, Ruhr-University BochumGoogle Scholar
  5. 5.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefGoogle Scholar
  6. 6.
    Craig RR, Kurdila AJ (2006) Fundamentals of structural dynamics. Wiley, New YorkzbMATHGoogle Scholar
  7. 7.
    Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20, vol 458. VDI, DüsseldorfGoogle Scholar
  8. 8.
    Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Technical University MunichGoogle Scholar
  9. 9.
    Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703CrossRefzbMATHGoogle Scholar
  10. 10.
    Düster A, Niggl A, Rank E (2007) Applying the hp-d version of the FEM to locally enhance dimensionally reduced models. Comput Methods Appl Mech Eng 196:3524–3533MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ergatoudis I, Irons BM, Zienkiewicz OC (1968) Curved isoparametric ‘quadrilateral’ elements for finite element analysis. Int J Solids Struct 4:31–42CrossRefzbMATHGoogle Scholar
  12. 12.
    Fish J (1992) The s-version of the finite element method. Comput Struct 43:539–547CrossRefzbMATHGoogle Scholar
  13. 13.
    Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  14. 14.
    Fish J, Markolefas S (1992) The s-version of the finite element method for multilayer laminates. Int J Numer Methods Eng 33:1081–1105CrossRefGoogle Scholar
  15. 15.
    Fried I (1972) Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J Sound Vib 22:407–418CrossRefzbMATHGoogle Scholar
  16. 16.
    Gordon WJ (1971) Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J Numer Anal 8:158–177MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7:461–477MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gordon WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21:109–129MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Görnandt A (2002) Einbeziehung der Temperatur in die Modellbildung und Berechnung von aktiven Strukturen mit piezokeramischen Aktuatoren und Sensoren (Engl.: Modelling active structures including the influence of temperature fields). VDI Fortschritt-Berichte Reihe 18, vol 276. VDI, DüsseldorfGoogle Scholar
  20. 20.
    Hilber HM, Hughes TJR (1978) Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq Eng Struct Dyn 6:99–117CrossRefGoogle Scholar
  21. 21.
    Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthq Eng Struct Dyn 4:245–249CrossRefGoogle Scholar
  22. 22.
    Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Princeton, NJzbMATHGoogle Scholar
  23. 23.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford Science Publications, OxfordGoogle Scholar
  25. 25.
    Newmark NM (1952) Computation of dynamic structural response in the range approaching failure. In: Proceedings of the symposium on earthquake and blast effects on structuresGoogle Scholar
  26. 26.
    Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:2067–2094Google Scholar
  27. 27.
    Nübel V (2005) Die adaptive rp-Methode für elastoplastische Probleme (Engl.: The adaptive rp-method for elasto-plastic problems). PhD thesis, Technical University MunichGoogle Scholar
  28. 28.
    Park KC, Underwood PG (1980) A variable-step central difference method for structural dynamics analysis - part 1. Theoretical aspects. Comput Methods Appl Mech Eng 22:241–258CrossRefzbMATHGoogle Scholar
  29. 29.
    Park KC, Underwood PG (1980) A variable-step central difference method for structural dynamics analysis - part 2. Implementation and performance evaluation. Comput Methods Appl Mech Eng 23:259–279CrossRefzbMATHGoogle Scholar
  30. 30.
    Piefort V (2001) Finite element modelling of piezoelectric active structures. PhD thesis, University of BrusselsGoogle Scholar
  31. 31.
    Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101:299–313CrossRefzbMATHGoogle Scholar
  32. 32.
    Rank E (1993) A zooming-technique using a hierarchical hp-version of the finite element method. In: Proceedings of MAFELAPzbMATHGoogle Scholar
  33. 33.
    Rayleigh JWS (1894) The theory of sound. Dover, New YorkzbMATHGoogle Scholar
  34. 34.
    Ringwelski S (2011) Numerische Modelle für die aktive Schwingungs- und Schallreduktion und deren Verifikation (Engl.: Numerical models for the simulation of active vibration control and noise reduction). PhD thesis, Otto-von-Guericke-University MagdeburgGoogle Scholar
  35. 35.
    Stoer J, Bulirsch R (2005) Stoer/Bulirsch: Numerische Mathematik 2 (Engl.: Numerical mathematics 2). Springer, BerlinGoogle Scholar
  36. 36.
    Szabó B, Babuška I (1991) Finite element analysis. Wiley, New YorkzbMATHGoogle Scholar
  37. 37.
    Szabó B, Babuška I (2011) Introduction to finite element analysis: formulation, verification and validation. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  38. 38.
    Tiersten HF (1969) Linear piezoelectric plate vibrations: elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates. Plenum, New YorkCrossRefGoogle Scholar
  39. 39.
    Uchino K (2000) Ferroelectric devices. Dekker, New YorkGoogle Scholar
  40. 40.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: volume 1 the basis. Butterworth Heinemann, OxfordzbMATHGoogle Scholar
  41. 41.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: volume 2 solid mechanics. Butterworth Heinemann, OxfordzbMATHGoogle Scholar
  42. 42.
    Zienkiewicz OC, Irons BM, Ergatoudis I, Ahmad S, Scott F (1969) Isoparametric and associate finite element families for two- and three-dimensional analysis. In: Finite element methods in stress analysis. Tapir, Technical University of Norway, TrondheimGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations