Advertisement

Wave Propagation in Elastic Solids: An Analytical Approach

  • N. Rauter
  • B. Hennings
  • M. N. Neumann
  • A. Asmus
  • R. LammeringEmail author
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Subject matter of the present chapter is the detailed derivation and description of the dispersion relations for single- and multiple-layered isotropic and anisotropic carbon fiber-reinforced plastics (CFRP). First of all, based on the Lamé–Navier equations the wave propagation in thin-walled isotropic solids and the characteristic dispersive behavior of the elastic waves are presented. Afterwards, the dispersion relations of an anisotropic single layer are introduced using the Christoffel equation. Here, special attention is given on the different approaches depending on how the elasticity tensor is populated. Finally, three procedures for the computation of the dispersion relations in multiple-layered anisotropic solids as well as their assets and drawbacks are presented.

References

  1. 1.
    Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke: Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen; 47 Tabellen. Dt. Verl. für Grundstoffindustrie, StuttgartGoogle Scholar
  2. 2.
    Aris R (1989) Vectors, tensors, and the basic equations of fluid mechanics. Dover books on mathematics. Dover Publications, New YorkzbMATHGoogle Scholar
  3. 3.
    Conry M (2005) Notes on wave propagation in anisotropic elastic solids. http://www.acronymchile.com/anisotropic_with_lamb_waves.pdf
  4. 4.
    Dunkin JW (1965) Computation of modal solutions in layered, elastic media at high frequencies. Bull Seismol Soc Am 55(2):335–358Google Scholar
  5. 5.
    Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic/Elsevier, New York/AmsterdamGoogle Scholar
  6. 6.
    Graff KF (1975) Wave motion in elastic solids. Dover Publications, New YorkzbMATHGoogle Scholar
  7. 7.
    Haskell NA (1953) The dispersion of surface waves on multi-layered media. Bull Seismol Soc Am 43:17–34MathSciNetGoogle Scholar
  8. 8.
    Hennings B (2014) Elastische Wellen in faserverstärkten Kunststoffplatten - Modellierung und Berechnung mit spektralen finiten Elementen im Zeitbereich. PhD thesis, Helmut-Schmidt-Universität/ Universität der Bundeswehr HamburgGoogle Scholar
  9. 9.
    Kausel E (1986) Wave propagation in anisotropic layered media. Int J Numer Methods Eng 23(8):1567–1578CrossRefzbMATHGoogle Scholar
  10. 10.
    Knopoff L (1964) A matrix method for elastic wave problems. Bull Seismol Soc Am 54: 431–438Google Scholar
  11. 11.
    Lamb H (1917) On waves in an elastic plate. Proc R Soc A Math Phys Eng Sci 93(648):114–128CrossRefzbMATHGoogle Scholar
  12. 12.
    Lowe M (1995) Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason Ferroelectr Freq Control 42(4):525–542CrossRefGoogle Scholar
  13. 13.
    Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  14. 14.
    Nayfeh AH (1991) The general problem of elastic wave propagation in multilayered anisotropic media. J Acoust Soc Am 89:1521–1531CrossRefGoogle Scholar
  15. 15.
    Nayfeh AH (1995) Wave propagation in layered anisotropic media: with applications to composites. North-Holland series in applied mathematics and mechanics, vol 39. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. John Wiley, New YorkCrossRefGoogle Scholar
  17. 17.
    Rauter N (2012) Ermittlung des Maßes der Nichtlinearität einer Platte mittels experimenteller Untersuchungen linearer und nichtlinearar Ausbreitungseigenschaften von Lamb-Wellen. Master’s thesis, Hochschule für angewandte Wissenschaften HamburgGoogle Scholar
  18. 18.
    Rokhlin S, Wang L (2002) Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites. Int J Solids Struct 39(16):4133–4149CrossRefzbMATHGoogle Scholar
  19. 19.
    Rokhlin SI, Wang L (2002) Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J Acoust Soc Am 112(3):822CrossRefGoogle Scholar
  20. 20.
    Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Santoni G (2010) Fundamental studies in the Lamb-wave interaction between piezoelectric wafer active sensors and host structure during SHM. Dissertation University of South Carolina, ColumbiaGoogle Scholar
  22. 22.
    Schmidt D (2010) Dokumentation CFK-Platten im DFG-Projekt: Intergrierte Bauteilüberwachung in Faserverbunden durch Analyse von Lambwellen nach deren gezielter Anregung durch piezo-keramische Flächenaktuatoren. Deutschen Zentrum für Luft- und Raumfahrt eV Institut für Faserverbundleichtbau und AdaptronikGoogle Scholar
  23. 23.
    Schmidt D (2014) Modenselektive Übertragung von Lambwellen in Faserverbundstrukturen. PhD thesis, Technische Universität BraunschweigGoogle Scholar
  24. 24.
    Szewieczek A (2016) Simulativ-experimentelle Auslegungsmethodik für Sensornetzwerke einer strukturintegrierten Zustandsüberwachung. PhD thesis, Technical University Carolo-Wilhelmina of BraunschweigGoogle Scholar
  25. 25.
    Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang L (2004) Elastic wave propagation in composites and least-squares damage localization technique. Master-Thesis, North Carolina State University, RaleighGoogle Scholar
  27. 27.
    Wang L, Rokhlin S (2001) Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39(6):413–424CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • N. Rauter
    • 1
  • B. Hennings
    • 1
  • M. N. Neumann
    • 1
  • A. Asmus
    • 1
  • R. Lammering
    • 1
    Email author
  1. 1.Institute of MechanicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations