Skip to main content

Wave Propagation in Elastic Solids: An Analytical Approach

  • Chapter
  • First Online:

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Subject matter of the present chapter is the detailed derivation and description of the dispersion relations for single- and multiple-layered isotropic and anisotropic carbon fiber-reinforced plastics (CFRP). First of all, based on the Lamé–Navier equations the wave propagation in thin-walled isotropic solids and the characteristic dispersive behavior of the elastic waves are presented. Afterwards, the dispersion relations of an anisotropic single layer are introduced using the Christoffel equation. Here, special attention is given on the different approaches depending on how the elasticity tensor is populated. Finally, three procedures for the computation of the dispersion relations in multiple-layered anisotropic solids as well as their assets and drawbacks are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The content of this section is contributed by Artur Szewieczek and Daniel Schmidt, who are the authors of Chaps. 5, 18 and 17, 20, respectively

  2. 2.

    The content of this section is contributed by Artur Szewieczek and Daniel Schmidt, who are the authors of Chaps. 5, 18 and 17, 20, respectively.

References

  1. Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke: Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen; 47 Tabellen. Dt. Verl. für Grundstoffindustrie, Stuttgart

    Google Scholar 

  2. Aris R (1989) Vectors, tensors, and the basic equations of fluid mechanics. Dover books on mathematics. Dover Publications, New York

    MATH  Google Scholar 

  3. Conry M (2005) Notes on wave propagation in anisotropic elastic solids. http://www.acronymchile.com/anisotropic_with_lamb_waves.pdf

  4. Dunkin JW (1965) Computation of modal solutions in layered, elastic media at high frequencies. Bull Seismol Soc Am 55(2):335–358

    Google Scholar 

  5. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic/Elsevier, New York/Amsterdam

    Google Scholar 

  6. Graff KF (1975) Wave motion in elastic solids. Dover Publications, New York

    MATH  Google Scholar 

  7. Haskell NA (1953) The dispersion of surface waves on multi-layered media. Bull Seismol Soc Am 43:17–34

    MathSciNet  Google Scholar 

  8. Hennings B (2014) Elastische Wellen in faserverstärkten Kunststoffplatten - Modellierung und Berechnung mit spektralen finiten Elementen im Zeitbereich. PhD thesis, Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg

    Google Scholar 

  9. Kausel E (1986) Wave propagation in anisotropic layered media. Int J Numer Methods Eng 23(8):1567–1578

    Article  MATH  Google Scholar 

  10. Knopoff L (1964) A matrix method for elastic wave problems. Bull Seismol Soc Am 54: 431–438

    Google Scholar 

  11. Lamb H (1917) On waves in an elastic plate. Proc R Soc A Math Phys Eng Sci 93(648):114–128

    Article  MATH  Google Scholar 

  12. Lowe M (1995) Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason Ferroelectr Freq Control 42(4):525–542

    Article  Google Scholar 

  13. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  14. Nayfeh AH (1991) The general problem of elastic wave propagation in multilayered anisotropic media. J Acoust Soc Am 89:1521–1531

    Article  Google Scholar 

  15. Nayfeh AH (1995) Wave propagation in layered anisotropic media: with applications to composites. North-Holland series in applied mathematics and mechanics, vol 39. Elsevier, Amsterdam

    Google Scholar 

  16. Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. John Wiley, New York

    Book  Google Scholar 

  17. Rauter N (2012) Ermittlung des Maßes der Nichtlinearität einer Platte mittels experimenteller Untersuchungen linearer und nichtlinearar Ausbreitungseigenschaften von Lamb-Wellen. Master’s thesis, Hochschule für angewandte Wissenschaften Hamburg

    Google Scholar 

  18. Rokhlin S, Wang L (2002) Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites. Int J Solids Struct 39(16):4133–4149

    Article  MATH  Google Scholar 

  19. Rokhlin SI, Wang L (2002) Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J Acoust Soc Am 112(3):822

    Article  Google Scholar 

  20. Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  21. Santoni G (2010) Fundamental studies in the Lamb-wave interaction between piezoelectric wafer active sensors and host structure during SHM. Dissertation University of South Carolina, Columbia

    Google Scholar 

  22. Schmidt D (2010) Dokumentation CFK-Platten im DFG-Projekt: Intergrierte Bauteilüberwachung in Faserverbunden durch Analyse von Lambwellen nach deren gezielter Anregung durch piezo-keramische Flächenaktuatoren. Deutschen Zentrum für Luft- und Raumfahrt eV Institut für Faserverbundleichtbau und Adaptronik

    Google Scholar 

  23. Schmidt D (2014) Modenselektive Übertragung von Lambwellen in Faserverbundstrukturen. PhD thesis, Technische Universität Braunschweig

    Google Scholar 

  24. Szewieczek A (2016) Simulativ-experimentelle Auslegungsmethodik für Sensornetzwerke einer strukturintegrierten Zustandsüberwachung. PhD thesis, Technical University Carolo-Wilhelmina of Braunschweig

    Google Scholar 

  25. Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang L (2004) Elastic wave propagation in composites and least-squares damage localization technique. Master-Thesis, North Carolina State University, Raleigh

    Google Scholar 

  27. Wang L, Rokhlin S (2001) Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39(6):413–424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lammering .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Characteristic Polynomial of the Christoffel Equation

In order to explain the vanishing terms with odd components in the conditional equation of the determinant [cf. Eq. (3.54)] for the elasticity tensor of a monoclinic material, the coefficient matrix of the Christoffel equation (3.50) is determined

$$\displaystyle{ \begin{array}{rl} \overbrace{\left (\lambda _{11} -\rho c_{\mathrm{p}}^{2}\right )\left (\lambda _{22} -\rho c_{\mathrm{p}}^{2}\right )\left (\lambda _{33} -\rho c_{\mathrm{p}}^{2}\right )}^{(1)} +\overbrace{ 2\lambda _{12}\lambda _{13}\lambda _{23}}^{(2)} & \\ -\mathop{\underbrace{\left (\lambda _{11} -\rho c_{\mathrm{p}}^{2}\right )\lambda _{23}^{2}}}\limits _{(3)} -\mathop{\underbrace{\left (\lambda _{22} -\rho c_{\mathrm{p}}^{2}\right )\lambda _{13}^{2}}}\limits _{(4)}-&\mathop{\underbrace{\left (\lambda _{33} -\rho c_{\mathrm{p}}^{2}\right )\lambda _{12}^{2}}}\limits _{(5)} = 0.\end{array} }$$
(3.135)

The values of λ ac are computed with the help of Eq. (3.49). Using Voigt’s notation [16], and considering the allocation of the elasticity tensor (3.53), element λ 11 of Eq. (3.135) is calculated exemplary.

$$\displaystyle\begin{array}{rcl} \lambda _{ac}& =& C_{abcd}n_{d}n_{b} \\ \lambda _{11}& =& C_{1b1d}n_{d}n_{b} =\sum _{ b,d=1}^{3}C_{ 1b1d}n_{d}n_{b} \\ & =& C_{1111} + C_{1311}\alpha + C_{1113}\alpha + C_{1313}\alpha ^{2} \\ & =& C_{11} + C_{51}\alpha + C_{15}\alpha + C_{55}\alpha ^{2} \\ & =& C_{11} + C_{55}\alpha ^{2} {}\end{array}$$
(3.136)

This way, the other elements of λ ac result in

$$\displaystyle{ \begin{array}{rl} \lambda _{12} & = C_{16} + C_{45}\alpha ^{2}, \\ \lambda _{13} & = (C_{13} + C_{55})\alpha, \\ \lambda _{22} & = C_{66} + C_{44}\alpha ^{2}, \\ \lambda _{23} & = (C_{36} + C_{45})\alpha, \\ \lambda _{33} & = C_{55} + C_{33}\alpha ^{2}. \end{array} }$$
(3.137)

Substituting the elements of Eq. (3.135) by (3.136) and (3.137) yields the following terms

$$\displaystyle\begin{array}{rcl} (1): \quad & & \left [\left (C_{11} + C_{55}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ]\left [\left (C_{ 66} + C_{44}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ]\left [\left (C_{ 55} + C_{33}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ], {}\\ (2): \quad & & 2\left (C_{16} + C_{45}\alpha ^{2}\right )\left (C_{ 55} + C_{13}\right )\left (C_{11} + C_{55}\right )\alpha ^{2}, {}\\ (3): \quad & & \left [\left (C_{11} + C_{55}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ]\left (C_{ 45} + C_{36}\right )^{2}\alpha ^{2}, {}\\ (4): \quad & & \left [\left (C_{66} + C_{44}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ]\left (C_{ 55} + C_{13}\right )^{2}\alpha ^{2}, {}\\ (5): \quad & & \left [\left (C_{55} + C_{33}\alpha ^{2}\right ) -\rho c_{\mathrm{ p}}^{2}\right ]\left (C_{ 16} + C_{45}\alpha ^{2}\right )^{2}. {}\\ \end{array}$$

Here, α exhibits only even exponents and therewith leads to Eq. (3.54).

Appendix 2: Summary of Stresses and Displacements of a Single Anisotropic Layer in a System of Equations

Once the pairs of values of α (depending on k) are computed using Eq. (3.54), the polarization vector p a is determined with the help of

$$\displaystyle{ \left [\begin{array}{*{10}c} \lambda _{11} -\rho c_{\mathrm{p}}^{2} & \lambda _{12} & \lambda _{13} \\ \lambda _{12} & \lambda _{22} -\rho c_{\mathrm{p}}^{2} & \lambda _{23} \\ \lambda _{13} & \lambda _{23} & \lambda _{33} -\rho c_{\mathrm{p}}^{2} \end{array} \right ]\left [\begin{array}{*{10}c} \,p_{1} \\ \,p_{2} \\ \,p_{3}\end{array} \right ] = 0. }$$
(3.50)

At this, the polarization vectors are any nonzero scalar multiples of

$$\displaystyle{ \mathbf{p} = \left [\begin{array}{*{10}c} 1\\ v\\ w\\ \end{array} \right ] }$$
(3.138)

with

$$\displaystyle{ v = \frac{p_{2}} {p_{1}} = \frac{\lambda _{12}\lambda _{13} -\lambda _{23}(\lambda _{11} -\rho c_{\mathrm{p}}^{2})} {\lambda _{12}\lambda _{23} -\lambda _{13}(\lambda _{22} -\rho c_{\mathrm{p}}^{2})}, }$$
(3.139)
$$\displaystyle{ w = \frac{p_{3}} {p_{1}} = \frac{\lambda _{12}\lambda _{13} -\lambda _{23}(\lambda _{11} -\rho c_{\mathrm{p}}^{2})} {\lambda _{13}\lambda _{23} -\lambda _{12}(\lambda _{33} -\rho c_{\mathrm{p}}^{2})}. }$$
(3.140)

For monoclinic material behavior, the values of v and w are computed according to

$$\displaystyle{ v(\alpha ) = \frac{p_{2}} {p_{1}} = \frac{(C_{16} + C_{45}\alpha ^{2})(C_{13} + C_{55}) - (C_{36} + C_{45})(C_{11} + C_{55}\alpha ^{2} -\rho c_{\mathrm{p}}^{2})} {(C_{16} + C_{45}\alpha ^{2})(C_{36} + C_{45}) - (C_{13} + C_{55})(C_{66} + C_{44}\alpha ^{2} -\rho c_{\mathrm{p}}^{2})}, }$$
(3.141)
$$\displaystyle{ w(\alpha ) = \frac{p_{3}} {p_{1}} = \frac{(C_{16} + C_{45}\alpha ^{2})(C_{13} + C_{55})\alpha - (C_{36} + C_{45})\alpha (C_{11} + C_{55}\alpha ^{2} -\rho c_{\mathrm{p}}^{2})} {(C_{13} + C_{55})(C_{36} + C_{45})\alpha ^{2} - (C_{16} + C_{45}\alpha ^{2})(C_{55} + C_{33}\alpha ^{2} -\rho c_{\mathrm{p}}^{2})}. }$$
(3.142)

Since the values of α occur in pairs, the influence of a changing sign on v and w is examined subsequently. Inserting −α into Eqs. (3.141) and (3.142) results in

$$\displaystyle{ v(-\alpha ) =\phantom{ -}v(\alpha ) }$$
(3.143)
$$\displaystyle{ w(-\alpha ) = -w(\alpha ). }$$
(3.144)

As can be seen, a varying sign of α changes the sign of w but not of v. Consequently, for the coefficients v m and w m one has

$$\displaystyle{ v_{m}^{+} = v_{ m}^{-}\quad \text{and}\quad w_{ m}^{+} = -w_{ m}^{-}\qquad \text{with}\quad m = 1,2,3. }$$
(3.145)

The values (u, w) m + denote the coefficients resulting from α m + and (u, w) m labels the coefficients computed with −α m .

Additionally, the coefficients of (d a ) m are investigated concerning a varying sign of ±α m . Therefore, subjected to α and its corresponding polarization vector p a the elements of d a are computed using Eq. (3.61). For element d 1

$$\displaystyle\begin{array}{rcl} d_{1}& =& \sum _{c,d=1}^{3}C_{ 13cd}n_{d}p_{c} {}\\ & =& C_{13c1}p_{c} + C_{13c3}\alpha p_{c} {}\\ & =& C_{1311}p_{1} + C_{1321}p_{2} + C_{1331}p_{3} + (C_{1313}p_{1} + C_{1323}p_{2} + C_{1333}p_{3})\alpha {}\\ & =& C_{15}p_{1} + C_{56}p_{2} + C_{55}p_{3} + (C_{55}p_{1} + C_{45}p_{2} + C_{35}p_{3})\alpha {}\\ & =& C_{55}(\,p_{3} +\alpha p_{1}) + C_{45}p_{2}. {}\\ \end{array}$$

is obtained. Inserting p from Eq. (3.138) d 1 results in

$$\displaystyle{ d_{1} = C_{55}(w+\alpha ) + C_{45}\alpha v. }$$
(3.146)

Using the same procedure for d 2 and d 3 leads to

$$\displaystyle{ d_{2} = C_{45}(w+\alpha ) + C_{44}\alpha v, }$$
(3.147)
$$\displaystyle{ d_{3} = C_{13} + C_{33}\alpha w + C_{36}v. }$$
(3.148)

As accomplished for the parameters v m and w m , the influence of a changing sign of α is analyzed relating to the elements of vector d a . For that reason, −α is substituted in Eqs. (3.146)– (3.148) and results in

$$\displaystyle{ d_{1}(-\alpha ) = -d_{1}(\alpha ), }$$
(3.149)
$$\displaystyle{ d_{2}(-\alpha ) = -d_{2}(\alpha ), }$$
(3.150)
$$\displaystyle{ d_{3}(-\alpha ) =\phantom{ -}d_{3}(\alpha ). }$$
(3.151)

This connectivity is valid for all pairs of values ±α m , in order that the relation of the elements of the vectors (d a ) m is given by

$$\displaystyle{ \begin{array}{r} (d_{1})_{m}^{+} = -(d_{1})_{m}^{-},\quad (d_{2})_{m}^{+} = -(d_{2})_{m}^{-},\quad (d_{3})_{m}^{+} = (d_{3})_{m}^{-}\quad \text{with}\quad m = 1,2,3, \end{array} }$$
(3.152)

where the parameters (d a ) m , cf. Eqs. (3.146)– (3.148), are

$$\displaystyle{ d_{1m} = C_{55}(w_{m} +\alpha _{m}) + C_{45}\alpha _{m}v_{m}, }$$
(3.153)
$$\displaystyle{ d_{2m} = C_{45}(w_{m} +\alpha _{m}) + C_{44}\alpha _{m}v_{m}, }$$
(3.154)
$$\displaystyle{ d_{3m} = C_{13} + C_{33}\alpha _{m}w_{m} + C_{36}v_{m}. }$$
(3.155)

Applying Eqs. (3.141), (3.142), and (3.153)– (3.155), the displacements and stresses in a single anisotropic layer are summarized in a system of equations as follows

$$\displaystyle{ \left [\begin{array}{*{10}c} u_{1} \\ u_{2} \\ u_{3} \\ \sigma _{1}^{{\ast}} \\ \sigma _{2}^{{\ast}} \\ \sigma _{3}^{{\ast}}\end{array} \right ] = \left [\begin{array}{*{10}c} 1 & 1 & 1 & 1 & 1 & 1 \\ v_{1}^{+} & v_{2}^{+} & v_{3}^{+} & v_{1}^{-} & v_{2}^{-} & v_{3}^{-} \\ w_{1}^{+} & w_{2}^{+} & w_{3}^{+} & w_{1}^{-}& w_{2}^{-}& w_{3}^{-} \\ d_{11}^{+} & d_{12}^{+} & d_{13}^{+} & d_{11}^{-}&d_{12}^{-}&d_{13}^{-} \\ d_{21}^{+} & d_{22}^{+} & d_{23}^{+} & d_{21}^{-}&d_{22}^{-}&d_{23}^{-} \\ d_{31}^{+} & d_{32}^{+} & d_{33}^{+} & d_{31}^{-}&d_{32}^{-}&d_{33}^{-} \end{array} \right ]\left [\begin{array}{*{10}c} A_{1}^{+}e^{i\left (kx_{1}+k\alpha _{1}x_{3}-\omega t\right )} \\ A_{2}^{+}e^{i\left (kx_{1}+k\alpha _{2}x_{3}-\omega t\right )} \\ A_{3}^{+}e^{i\left (kx_{1}+k\alpha _{3}x_{3}-\omega t\right )} \\ A_{1}^{-}e^{i\left (kx_{1}-k\alpha _{1}x_{3}-\omega t\right )} \\ A_{2}^{-}e^{i\left (kx_{1}-k\alpha _{2}x_{3}-\omega t\right )} \\ A_{3}^{-}e^{i\left (kx_{1}-k\alpha _{3}x_{3}-\omega t\right )} \end{array} \right ], }$$
(3.156)

where

$$\displaystyle{ \sigma _{a}^{{\ast}} = \frac{\sigma _{a}} {ik}. }$$
(3.157)

With the help of the relations specified in Eq. (3.145) and (3.152), a rearrangement of the columns leads to the system of equations given in Sect. 3.3.2

$$\displaystyle{ \left [\begin{array}{*{10}c} u_{1} \\ u_{2} \\ u_{3} \\ \sigma _{1}^{{\ast}} \\ \sigma _{2}^{{\ast}} \\ \sigma _{3}^{{\ast}}\end{array} \right ] = \left [\begin{array}{*{10}c} 1 & 1 & 1 & 1 & 1 & 1\\ v_{ 1} & v_{1} & v_{2} & v_{2} & v_{3} & v_{3} \\ w_{1} & -w_{1} & w_{2} & -w_{2} & w_{3} & -w_{3} \\ d_{11} & -d_{11} & d_{12} & -d_{12} & d_{13} & -d_{13} \\ d_{21} & -d_{21} & d_{22} & -d_{22} & d_{23} & -d_{23} \\ d_{31} & d_{31} & d_{32} & d_{32} & d_{33} & d_{33} \end{array} \right ]\left [\begin{array}{*{10}c} A_{1}^{+}e^{ik\alpha _{1}x_{3}} \\ A_{1}^{-}e^{-ik\alpha _{1}x_{3}} \\ A_{2}^{+}e^{ik\alpha _{2}x_{3}} \\ A_{2}^{-}e^{-ik\alpha _{2}x_{3}} \\ A_{3}^{+}e^{ik\alpha _{3}x_{3}} \\ A_{3}^{-}e^{-ik\alpha _{3}x_{3}} \end{array} \right ]e^{i(kx_{1}-\omega t)}. }$$
(3.96)

Appendix 3: Separated Dispersion Relations for the Symmetric and Antisymmetric Wave Modes

Based on Eq. (3.65), separate dispersion relations for the symmetric and antisymmetric modes of LAMB and SH-waves shall be derived. First of all, Eq. (3.65) is formulated without shifting the point of origin to the top or bottom surface of the plate

$$\displaystyle{ \left [\begin{array}{*{10}c} \sigma _{a}^{t} \\ \sigma _{a}^{b}\\ \end{array} \right ] = ik\left [\begin{array}{*{10}c} d_{am}^{+}e^{ik\alpha _{m}\frac{h} {2} } & d_{am}^{-}e^{-ik\alpha _{m}\frac{h} {2} } \\ d_{am}^{+}e^{-ik\alpha _{m}\frac{h} {2} } & d_{am}^{-}e^{ik\alpha _{m}\frac{h} {2} }\\ \end{array} \right ]\left [\begin{array}{*{10}c} A_{m}^{+} \\ A_{m}^{-}\\ \end{array} \right ]e^{i\left (kx_{1}-\omega t\right )} = 0, }$$
(3.158)

where d am ± is the simplified spelling of term (d a ) m ±. The coefficient matrix reads as follows

$$\displaystyle{ \left [\begin{array}{*{10}c} d_{11}^{+}e^{ik\alpha _{1} \frac{h} {2} } & d_{12}^{+}e^{ik\alpha _{2} \frac{h} {2} } & d_{13}^{+}e^{ik\alpha _{3} \frac{h} {2} } & d_{11}^{-}e^{-ik\alpha _{1} \frac{h} {2} } & d_{12}^{-}e^{-ik\alpha _{2} \frac{h} {2} } & d_{13}^{-}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{21}^{+}e^{ik\alpha _{1} \frac{h} {2} } & d_{22}^{+}e^{ik\alpha _{2} \frac{h} {2} } & d_{23}^{+}e^{ik\alpha _{3} \frac{h} {2} } & d_{21}^{-}e^{-ik\alpha _{1} \frac{h} {2} } & d_{22}^{-}e^{-ik\alpha _{2} \frac{h} {2} } & d_{23}^{-}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{31}^{+}e^{ik\alpha _{1} \frac{h} {2} } & d_{32}^{+}e^{ik\alpha _{2} \frac{h} {2} } & d_{33}^{+}e^{ik\alpha _{3} \frac{h} {2} } & d_{31}^{-}e^{-ik\alpha _{1} \frac{h} {2} } & d_{32}^{-}e^{-ik\alpha _{2} \frac{h} {2} } & d_{33}^{-}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{11}^{+}e^{-ik\alpha _{1} \frac{h} {2} } & d_{12}^{+}e^{-ik\alpha _{2} \frac{h} {2} } & d_{13}^{+}e^{-ik\alpha _{3} \frac{h} {2} } & d_{11}^{-}e^{ik\alpha _{1} \frac{h} {2} } & d_{12}^{-}e^{ik\alpha _{2} \frac{h} {2} } & d_{13}^{-}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{21}^{+}e^{-ik\alpha _{1} \frac{h} {2} } & d_{22}^{+}e^{-ik\alpha _{2} \frac{h} {2} } & d_{23}^{+}e^{-ik\alpha _{3} \frac{h} {2} } & d_{21}^{-}e^{ik\alpha _{1} \frac{h} {2} } & d_{22}^{-}e^{ik\alpha _{2} \frac{h} {2} } & d_{23}^{-}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{31}^{+}e^{-ik\alpha _{1} \frac{h} {2} } & d_{32}^{+}e^{-ik\alpha _{2} \frac{h} {2} } & d_{33}^{+}e^{-ik\alpha _{3} \frac{h} {2} } & d_{31}^{-}e^{ik\alpha _{1} \frac{h} {2} } & d_{32}^{-}e^{ik\alpha _{2} \frac{h} {2} } & d_{33}^{-}e^{ik\alpha _{3} \frac{h} {2} } \end{array} \right ]. }$$

Taking account of the relations in Eq. (3.152), the coefficient matrix becomes

$$\displaystyle{ \left [\begin{array}{*{10}c} d_{11}e^{ik\alpha _{1} \frac{h} {2} } & d_{12}e^{ik\alpha _{2} \frac{h} {2} } & d_{13}e^{ik\alpha _{3} \frac{h} {2} } & -d_{11}e^{-ik\alpha _{1} \frac{h} {2} } & -d_{12}e^{-ik\alpha _{2} \frac{h} {2} } & -d_{13}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{21}e^{ik\alpha _{1} \frac{h} {2} } & d_{22}e^{ik\alpha _{2} \frac{h} {2} } & d_{23}e^{ik\alpha _{3} \frac{h} {2} } & -d_{21}e^{-ik\alpha _{1} \frac{h} {2} } & -d_{22}e^{-ik\alpha _{2} \frac{h} {2} } & -d_{23}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{31}e^{ik\alpha _{1} \frac{h} {2} } & d_{32}e^{ik\alpha _{2} \frac{h} {2} } & d_{33}e^{ik\alpha _{3} \frac{h} {2} } & d_{31}e^{-ik\alpha _{1} \frac{h} {2} } & d_{32}e^{-ik\alpha _{2} \frac{h} {2} } & d_{33}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{11}e^{-ik\alpha _{1} \frac{h} {2} } & d_{12}e^{-ik\alpha _{2} \frac{h} {2} } & d_{13}e^{-ik\alpha _{3} \frac{h} {2} } & -d_{11}e^{ik\alpha _{1} \frac{h} {2} } & -d_{12}e^{ik\alpha _{2} \frac{h} {2} } & -d_{13}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{21}e^{-ik\alpha _{1} \frac{h} {2} } & d_{22}e^{-ik\alpha _{2} \frac{h} {2} } & d_{23}e^{-ik\alpha _{3} \frac{h} {2} } & -d_{21}e^{ik\alpha _{1} \frac{h} {2} } & -d_{22}e^{ik\alpha _{2} \frac{h} {2} } & -d_{23}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{31}e^{-ik\alpha _{1} \frac{h} {2} } & d_{32}e^{-ik\alpha _{2} \frac{h} {2} } & d_{33}e^{-ik\alpha _{3} \frac{h} {2} } & d_{31}e^{ik\alpha _{1} \frac{h} {2} } & d_{32}e^{ik\alpha _{2} \frac{h} {2} } & d_{33}e^{ik\alpha _{3} \frac{h} {2} } \end{array} \right ]. }$$

Here, the superscripted + of d am + is relinquished, because there are solely vectors of d am belonging to a positive α m . A rearranging of rows and columns results in

$$\displaystyle{ \left [\begin{array}{*{10}c} d_{11}e^{ik\alpha _{1} \frac{h} {2} } & -d_{11}e^{-ik\alpha _{1} \frac{h} {2} } & d_{12}e^{ik\alpha _{2} \frac{h} {2} } & -d_{12}e^{-ik\alpha _{2} \frac{h} {2} } & d_{13}e^{ik\alpha _{3} \frac{h} {2} } & -d_{13}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{11}e^{-ik\alpha _{1} \frac{h} {2} } & -d_{11}e^{ik\alpha _{1} \frac{h} {2} } & d_{12}e^{-ik\alpha _{2} \frac{h} {2} } & -d_{12}e^{ik\alpha _{2} \frac{h} {2} } & d_{13}e^{-ik\alpha _{3} \frac{h} {2} } & -d_{13}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{21}e^{ik\alpha _{1} \frac{h} {2} } & -d_{21}e^{-ik\alpha _{1} \frac{h} {2} } & d_{22}e^{ik\alpha _{2} \frac{h} {2} } & -d_{22}e^{-ik\alpha _{2} \frac{h} {2} } & d_{23}e^{ik\alpha _{3} \frac{h} {2} } & -d_{23}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{21}e^{-ik\alpha _{1} \frac{h} {2} } & -d_{21}e^{ik\alpha _{1} \frac{h} {2} } & d_{22}e^{-ik\alpha _{2} \frac{h} {2} } & -d_{22}e^{ik\alpha _{2} \frac{h} {2} } & d_{23}e^{-ik\alpha _{3} \frac{h} {2} } & -d_{23}e^{ik\alpha _{3} \frac{h} {2} } \\ d_{31}e^{ik\alpha _{1} \frac{h} {2} } & d_{31}e^{-ik\alpha _{1} \frac{h} {2} } & d_{32}e^{ik\alpha _{2} \frac{h} {2} } & d_{32}e^{-ik\alpha _{2} \frac{h} {2} } & d_{33}e^{ik\alpha _{3} \frac{h} {2} } & d_{33}e^{-ik\alpha _{3} \frac{h} {2} } \\ d_{31}e^{-ik\alpha _{1} \frac{h} {2} } & d_{31}e^{ik\alpha _{1} \frac{h} {2} } & d_{32}e^{-ik\alpha _{2} \frac{h} {2} } & d_{32}e^{ik\alpha _{2} \frac{h} {2} } & d_{33}e^{-ik\alpha _{3} \frac{h} {2} } & d_{33}e^{ik\alpha _{3} \frac{h} {2} } \end{array} \right ]. }$$

From the pairwise addition and subtraction of the columns following the pattern

the coefficient matrix composed of summands and differences may be written as

$$\displaystyle{ \left [\begin{array}{*{10}c} (a_{11}) - (a_{12})&(a_{11}) + (a_{12})&(a_{13}) - (a_{14})&(a_{13}) + (a_{14})&(a_{15}) - (a_{16})&(a_{15}) + (a_{16}) \\ (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) \\ (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) \\ (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) \\ (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) \\ (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) & (\ldots ) \end{array} \right ], }$$

exemplary, with the following entries of the first row

$$\displaystyle\begin{array}{rcl} (a_{11}) - (a_{12}):& \qquad d_{11}\left [e^{ik\alpha _{1} \frac{h} {2} } + e^{-ik\alpha _{1} \frac{h} {2} }\right ],& {}\\ (a_{11}) + (a_{12}):& \qquad d_{11}\left [e^{ik\alpha _{1} \frac{h} {2} } - e^{-ik\alpha _{1} \frac{h} {2} }\right ],& {}\\ (a_{13}) - (a_{14}):& \qquad d_{12}\left [e^{ik\alpha _{2} \frac{h} {2} } + e^{-ik\alpha _{2} \frac{h} {2} }\right ],& {}\\ (a_{13}) + (a_{14}):& \qquad d_{12}\left [e^{ik\alpha _{2} \frac{h} {2} } - e^{-ik\alpha _{2} \frac{h} {2} }\right ],& {}\\ (a_{15}) - (a_{16}):& \qquad d_{13}\left [e^{ik\alpha _{3} \frac{h} {2} } + e^{-ik\alpha _{3} \frac{h} {2} }\right ],& {}\\ (a_{15}) + (a_{16}):& \qquad d_{13}\left [e^{ik\alpha _{3} \frac{h} {2} } - e^{-ik\alpha _{3} \frac{h} {2} }\right ].& {}\\ \end{array}$$

Using Euler’s formula

$$\displaystyle{ \sin x = \frac{1} {2i}\left (e^{ix} - e^{-ix}\right )\;\;\text{and}\;\;\cos x = \frac{1} {2}\left (e^{ix} + e^{-ix}\right ) }$$
(3.159)

the terms in squared brackets are further transformed and one obtains the matrix

$$\displaystyle{ \left [\begin{array}{*{10}c} 2d_{11}\cos (k\alpha _{1} \frac{h} {2} ) & 2id_{11}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{12}\cos (k\alpha _{2} \frac{h} {2} ) & -2id_{12}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{13}\cos (k\alpha _{3} \frac{h} {2} ) & 2id_{13}\sin (k\alpha _{3} \frac{h} {2} ) \\ 2d_{11}\cos (k\alpha _{1} \frac{h} {2} ) & -2id_{11}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{12}\cos (k\alpha _{2} \frac{h} {2} ) & 2id_{12}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{13}\cos (k\alpha _{3} \frac{h} {2} ) & -2id_{13}\sin (k\alpha _{3} \frac{h} {2} ) \\ 2d_{21}\cos (k\alpha _{1} \frac{h} {2} ) & 2id_{21}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{22}\cos (k\alpha _{2} \frac{h} {2} ) & -2id_{22}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{23}\cos (k\alpha _{3} \frac{h} {2} ) & 2id_{23}\sin (k\alpha _{3} \frac{h} {2} ) \\ 2d_{21}\cos (k\alpha _{1} \frac{h} {2} ) & -2id_{21}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{22}\cos (k\alpha _{2} \frac{h} {2} ) & 2id_{22}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{23}\cos (k\alpha _{3} \frac{h} {2} ) & -2id_{23}\sin (k\alpha _{3} \frac{h} {2} ) \\ 2id_{31}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{31}\cos (k\alpha _{1} \frac{h} {2} ) & 2id_{32}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{32}\cos (k\alpha _{2} \frac{h} {2} ) & 2id_{33}\sin (k\alpha _{3} \frac{h} {2} ) & 2id_{33}\sin (k\alpha _{3} \frac{h} {2} ) \\ -2id_{31}\sin (k\alpha _{1} \frac{h} {2} ) & 2d_{31}\cos (k\alpha _{1} \frac{h} {2} ) & -2id_{32}\sin (k\alpha _{2} \frac{h} {2} ) & 2d_{32}\cos (k\alpha _{2} \frac{h} {2} ) & -2id_{33}\sin (k\alpha _{3} \frac{h} {2} ) & 2d_{33}\cos (k\alpha _{3} \frac{h} {2} ) \end{array} \right ]. }$$

Now, the rows are added and subtracted in the same way as the columns which leads to

$$\displaystyle{ \left [\begin{array}{*{10}c} 0 & 4id_{11}\sin (k\alpha _{1} \frac{h} {2} ) & 0 & 4id_{12}\sin (k\alpha _{2} \frac{h} {2} ) & 0 & 4id_{13}\sin (k\alpha _{3} \frac{h} {2} ) \\ 4d_{11}\cos (k\alpha _{1} \frac{h} {2} ) & 0 & 4d_{12}\cos (k\alpha _{2} \frac{h} {2} ) & 0 & 4d_{13}\cos (k\alpha _{3} \frac{h} {2} ) & 0 \\ 0 & 4id_{21}\sin (k\alpha _{1} \frac{h} {2} ) & 0 & 4id_{22}\sin (k\alpha _{2} \frac{h} {2} ) & 0 & 4id_{23}\sin (k\alpha _{3} \frac{h} {2} ) \\ 4d_{21}\cos (k\alpha _{1} \frac{h} {2} ) & 0 & 4d_{22}\cos (k\alpha _{2} \frac{h} {2} ) & 0 & 4d_{23}\cos (k\alpha _{3} \frac{h} {2} ) & 0 \\ 4id_{31}\sin (k\alpha _{1} \frac{h} {2} ) & 0 & 4id_{32}\sin (k\alpha _{2} \frac{h} {2} ) & 0 & 4id_{33}\sin (k\alpha _{3} \frac{h} {2} ) & 0 \\ 0 & 4d_{31}\cos (k\alpha _{1} \frac{h} {2} ) & 0 & 4d_{32}\cos (k\alpha _{2} \frac{h} {2} ) & 0 & 4d_{33}\cos (k\alpha _{3} \frac{h} {2} ) \end{array} \right ] }$$

A further rearrangement of rows and columns yields

$$\displaystyle{ \left [\begin{array}{*{10}c} 4d_{11}\cos (k\alpha _{1}\frac{h} {2} ) & 4d_{12}\cos (k\alpha _{2}\frac{h} {2} ) & 4d_{13}\cos (k\alpha _{3}\frac{h} {2} ) & 0 & 0 & 0 \\ 4d_{21}\cos (k\alpha _{1}\frac{h} {2} ) & 4d_{22}\cos (k\alpha _{2}\frac{h} {2} ) & 4d_{23}\cos (k\alpha _{3}\frac{h} {2} ) & 0 & 0 & 0 \\ 4id_{31}\sin (k\alpha _{1}\frac{h} {2} )&4id_{32}\sin (k\alpha _{2}\frac{h} {2} )&4id_{33}\sin (k\alpha _{3}\frac{h} {2} )& 0 & 0 & 0 \\ 0 & 0 & 0 &4id_{11}\sin (k\alpha _{1}\frac{h} {2} )&4id_{12}\sin (k\alpha _{2}\frac{h} {2} )&4id_{13}\sin (k\alpha _{3}\frac{h} {2} ) \\ 0 & 0 & 0 &4id_{21}\sin (k\alpha _{1}\frac{h} {2} )&4id_{22}\sin (k\alpha _{2}\frac{h} {2} )&4id_{23}\sin (k\alpha _{3}\frac{h} {2} ) \\ 0 & 0 & 0 & 4d_{31}\cos (k\alpha _{1}\frac{h} {2} ) & 4d_{32}\cos (k\alpha _{2}\frac{h} {2} ) & 4d_{33}\cos (k\alpha _{3}\frac{h} {2} ) \end{array} \right ]. }$$
(3.160)

The determinants of the two resulting submatrices provide the separated dispersion relations of the symmetric and antisymmetric wave modes. The conditional equations of the symmetric Lamb wave mode are written as

$$\displaystyle{ d_{31}G_{1}\cot (\alpha _{1}\gamma ) + d_{32}G_{2}\cot (\alpha _{2}\gamma ) + d_{33}G_{3}\cot (\alpha _{3}\gamma ) = 0 }$$
(3.69)

and for the antisymmetric Lamb wave mode one obtains

$$\displaystyle{ d_{31}G_{1}\tan (\alpha _{1}\gamma ) + d_{32}G_{2}\tan (\alpha _{2}\gamma ) + d_{33}G_{3}\tan (\alpha _{3}\gamma ) = 0 }$$
(3.70)

with

$$\displaystyle\begin{array}{rcl} G_{1}& =& d_{12}d_{23} - d_{22}d_{13}, {}\\ G_{2}& =& d_{13}d_{21} - d_{23}d_{11}, {}\\ G_{3}& =& d_{11}d_{22} - d_{21}d_{12}, {}\\ \gamma & =& \frac{kh} {2}. {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rauter, N., Hennings, B., Neumann, M.N., Asmus, A., Lammering, R. (2018). Wave Propagation in Elastic Solids: An Analytical Approach. In: Lammering, R., Gabbert, U., Sinapius, M., Schuster, T., Wierach, P. (eds) Lamb-Wave Based Structural Health Monitoring in Polymer Composites. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-319-49715-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49715-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49714-3

  • Online ISBN: 978-3-319-49715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics