Mode Selective Actuator-Sensor-Systems

  • D. Schmidt
  • M. SinapiusEmail author
Part of the Research Topics in Aerospace book series (RTA)


This chapter presents mode selective actuator-sensor-systems which are able to generate and receive a particular Lamb wave mode in plate-like structures. The chapter begins with an overview of different mode selective techniques and transducers. Then analytical models based on higher order plate theory are presented. The models are developed in order to analyse the mode selectivity and the radiated acoustic field of interdigital transducers in CFRP plates. The last part of the chapter shows different manufacturing technologies of interdigital transducers as well as the validation of the analytical models by experimental measurements. It is shown, that the experimental measurements correlate with the analytical results and mode selectivity of A0 or S0 mode can be achieved in composite plates by the interdigital transducers.


  1. 1.
    Beckert W, Kreher WS (2003) Modelling piezoelectric modules with interdigitated electrode structures. Comput Mater Sci 26:36–45CrossRefGoogle Scholar
  2. 2.
    Bent A, Hagood NW (1997) Piezoelectric fiber composites with interdigitated electrodes. J Intell Mater Syst Struct 8(8):903–919CrossRefGoogle Scholar
  3. 3.
    Bhalla S, Soh CK (2004) Electromechanical impedance modeling for adhesively bonded Piezo-transducers. J Intell Mater Syst Struct 15(12):955–972CrossRefGoogle Scholar
  4. 4.
    Bhalla S, Soh CK (2008) Electro-mechanical impedance technique for structural health monitoring and non-destructive evaluation. In: National workshop on structural health monitoring, non-destructive evaluation and retrofitting of structures, pp 146–222Google Scholar
  5. 5.
    Calomfirescu M (2008) Lamb waves for structural health monitoring in viscoelastic composite materials. Science-Report Faserinstitut Bremen, Dissertation, Universität BremenGoogle Scholar
  6. 6.
    Ditri J, Rajana KM (1995) Analysis of the wedge method of generating guided waves. In: Review of progress in quantitative nondestructive evaluation, vol 14. Springer, New York, pp 163–170CrossRefGoogle Scholar
  7. 7.
    Gao H, Rose JL, Lissenden CJ (2007) Ultrasonic guided wave mode selection and tuning in composites using a piezoelectric phased array. In: International workshop on structural health monitoring, pp 1668–1675Google Scholar
  8. 8.
    Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic Press, San DiegoGoogle Scholar
  9. 9.
    Graff KF (1975) Wave Motion in elastic solids. Dover books on engineering. Oxford University Press, LondonzbMATHGoogle Scholar
  10. 10.
    Kurosh AG (1980) Higher algebra. Mir Publishers, MoscowzbMATHGoogle Scholar
  11. 11.
    Lazarus KB, Lundstrom ME, Moore JW, Crawley E, Russo F, Yoshikawa S (1997) Packaged strain actuator. Technical Report 5.656.882, United States Patent 5.656.882Google Scholar
  12. 12.
    Li J, Rose JL (2001) Implementing guided wave mode control by use of a phased transducer array. IEEE Trans Ultrason Ferroelectr Freq Control 48(3):761–768CrossRefGoogle Scholar
  13. 13.
    Manka M, Rosiek M, Martowicz A, Uhl T, Stepinski T (2011) Properties of interdigital transducers for lamb-wave based SHM systems. In: International workshop on structural health monitoring, pp 1488–1496Google Scholar
  14. 14.
    Matthews H (1977) Surface wave filters - design, construction, and use. Wiley, New YorkGoogle Scholar
  15. 15.
    Monkhouse RSC, Wilcox PD, Cawley P (1997) Flexible interdigital PVDF transducers for the generation of Lamb waves in structures. Ultrasonics 35(7):489–498CrossRefGoogle Scholar
  16. 16.
    Na JK, Kuhr S, Druffner C (2011) Interdigitized transducers (IDTs) for structural health monitoring (SHM) applications. In: International workshop on structural health monitoring, pp 1587–1594Google Scholar
  17. 17.
    Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Mater Struct 14(6):1448CrossRefGoogle Scholar
  18. 18.
    Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Rose JL, Pelts SP, Quarry MJ (1998) A comb transducer model for guided wave NDE. Ultrasonics 36(1–5):163–169CrossRefGoogle Scholar
  20. 20.
    Schmidt D (2014) Mode Selective Transmission of Lamb Waves in Composite Structures. DLR-Forschungsbericht DLR-FB 2014-24, Dissertation, Technische Universität BraunschweigGoogle Scholar
  21. 21.
    Schmidt D, Sadri H, Szewieczek A, Sinapius M, Wierach P, Siegert I, Wendemuth A (2013a) Characterization of Lamb wave attenuation mechanisms. In: Proceedings of SPIE, vol 8695, pp 869503–869508Google Scholar
  22. 22.
    Schmidt D, Sinapius M, Wierach P (2013b) Design of mode selective actuators for Lamb wave excitation in composite plates. CEAS Aeronaut J 4(1):105–112CrossRefGoogle Scholar
  23. 23.
    Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257CrossRefGoogle Scholar
  24. 24.
    Su Z, Ye L (2004) Selective generation of Lamb wave modes and their propagation characteristics in defective composite laminates. Proc Inst Mech Eng L J Mater Des Appl 218(2):95–110CrossRefGoogle Scholar
  25. 25.
    Torres-Arredondo MA, Fritzen CP (2011) A viscoelastic plate theory for the fast modelling of Lamb wave solutions in NDT/SHM applications. Ultragarsas (Ultrasound) 66(2):7–13Google Scholar
  26. 26.
    Veidt M, Liu T, Kitipornchai S (2002) Modelling of Lamb waves in composite laminated plates excited by interdigital transducers. NDT & E Int 35(7):437–447CrossRefGoogle Scholar
  27. 27.
    Viktorov IA (1967) Rayleigh and Lamb waves: physical theory and applications. ultrasonic technology. Plenum Press, New YorkGoogle Scholar
  28. 28.
    Wang L (2004) Elastic wave propagation in composites and least-squares damage localization technique. Dissertation, North Carolina State UniversityGoogle Scholar
  29. 29.
    Wierach P (2002) Elektromechanisches Funktionsmodul. Technical Report, DE10051784C1, German Patent DE10051784C1Google Scholar
  30. 30.
    Wierach P, Hennig E, Ditas P, Linke S (2009) Piezocomposite actuators based on multilayer technology. In: Adaptronic congress, pp 1–6Google Scholar
  31. 31.
    Wilcox PD, Cawley P, Lowe M (1998) Acoustic fields from PVDF interdigital transducers. IEE Proc: Sci Meas Technol 145(5):250–259Google Scholar
  32. 32.
    Wilcox PD, Lowe MJS, Cawley P (2001) Mode and transducer selection for long range Lamb wave inspection. J Intell Mater Syst Struct 12(8):553–565CrossRefGoogle Scholar
  33. 33.
    Wilkie WK (2003) Method of fabricating a piezoelectric composite apparatus. Technical Report 6.629.341, United States Patent 6.629.341Google Scholar
  34. 34.
    Yu L, Bottai-Santoni G, Giurgiutiu V (2010) Shear lag solution for tuning ultrasonic piezoelectric wafer active sensors with applications to Lamb wave array imaging. Int J Eng Sci 48(10):848–861CrossRefGoogle Scholar
  35. 35.
    Zhu W, Rose JL (1999) Lamb wave generation and reception with time-delay periodic linear arrays: a BEM simulation and experimental study. IEEE Trans Ultrason Ferroelectr Freq Control 46(3):654–664CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Institute of Composite Structures and Adaptive SystemsBraunschweigGermany
  2. 2.Institute of Adaptronics and Function IntegrationBraunschweig University of TechnologyBraunschweigGermany

Personalised recommendations