Localization of Damaging Events and Damage in Anisotropic Plates by Migration Technique

  • A. Ungethüm
  • R. LammeringEmail author
Part of the Research Topics in Aerospace book series (RTA)


In this chapter, an effective technique is presented, which allows to identify and to localize damaging events, i.e., caused by impact , on the base of wave propagation. The same technique is applied for the localization of existing damage. The presentation follows Ungethüm (Migrationsbasierte Lokalisierung von Schadensereignissen und Schäden in flächigen anisotropen Strukturen. PhD thesis, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, 2011).


  1. 1.
    Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 1995:1–52MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ciampa F, Meo M (2010) Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique. Smart Mater Struct 19(4):45027CrossRefGoogle Scholar
  3. 3.
    Gaul L, Hurlebaus S (1999) Determination of the impact force on a plate by piezoelectric film sensors. Arch Appl Mech 69:691–701CrossRefzbMATHGoogle Scholar
  4. 4.
    Hagedorn JG (1954) A process of seismic reflection interpretation. Geophys Prospect 2:85–127CrossRefGoogle Scholar
  5. 5.
    Han SP (1976) Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math Program 11:263–282MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jeong H, Jang YS (2000) Fracture source location in thin plates using the wavelet transform of dispersive waves. IEEE Trans Ultrason Ferroelectr Freq Control 47:612–619CrossRefGoogle Scholar
  7. 7.
    Lammering R (2009) Observation of piezoelectrically induced Lamb wave propagation in thin plates by use of speckle interferometry. Exp Mech 50(3):377–387CrossRefGoogle Scholar
  8. 8.
    Markmiller JFC, Chang FK (2010) Sensor network optimization for a passive sensing impact detection technique. Struct Health Monit 9(1):25–39CrossRefGoogle Scholar
  9. 9.
    Meo M, Zumpano G, Pigott M, Marengo G (2005) Impact identification on a sandwich plate from wave propagation responses. Compos Struct 71:302–306CrossRefGoogle Scholar
  10. 10.
    Molyneux JB, Schmitt DR (2000) Compressional-wave velocities in attenuating media: a laboratory physical model study. Geophysics 65(4):1162–1167CrossRefGoogle Scholar
  11. 11.
    Moore DS, McCabe GP (2002) Introduction to the practice of statistics, 4th edn. W.H. Freeman, New YorkzbMATHGoogle Scholar
  12. 12.
    Neumann M (2009) Experimentelle Untersuchung des Interaktionsverhaltens elastischer Wellen mit Strukturfehlern in dünnwandigen Strukturbauteilen. Master’s thesis, Hamburg University of Applied Sciences, HamburgGoogle Scholar
  13. 13.
    Pierce SG, Culshaw B, Manson G, Worden K, Staszewski WJ (2000) The application of ultrasonic Lamb wave techniques to the evaluation of advanced composite structures. In: Claus RO, Spillman WB (eds) Proceedings of the SPIE, vol 3986, pp 93–103Google Scholar
  14. 14.
    Powell MJD (1978) A fast algorithm for nonlinearly constraint optimization calculations. In: Watson GA (ed) Lecture notes in mathematics, numerical analysis, vol 630. Springer, BerlinGoogle Scholar
  15. 15.
    Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Schittkowski K (1983) On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math Oper Stat Ser Optim 14(2):197–216MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ungethüm A (2011) Migrationsbasierte Lokalisierung von Schadensereignissen und Schäden in flächigen anisotropen Strukturen. PhD thesis, Helmut-Schmidt-Universität / Universität der Bundeswehr HamburgGoogle Scholar
  18. 18.
    Ungethüm A, Lammering R (2009) A migration model for impact localization on carbon fiber reinforced plastic plates. In: Proceedings of IV Eccomas thematic conference on smart structures and materials, pp 31–43Google Scholar
  19. 19.
    Ungethüm A, Lammering R (2010) Load monitoring of impacted carbon fibre reinforced plastic plates. Proc Appl Math Mech 9(1):217–218CrossRefGoogle Scholar
  20. 20.
    Wilson RB (1963) A simplicial algorithm for concave programming. PhD thesis, Harvard UniversityGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of MechanicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations