Skip to main content

Continuous Mode Conversion in Experimental Observations

  • Chapter
  • First Online:
  • 1410 Accesses

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

In the current chapter, the phenomenon of continuous mode conversion in woven fabrics is examined experimentally. For this purpose, the occurrence and characteristics of continuous mode conversion in polymer composites with different layups are investigated first. The distinctive features are presented and discussed. For their explanation, numerical investigations are executed which allow to consider a geometrically perfect composition of the fiber and matrix material. Furthermore, static tensile tests are performed experimentally and numerically in order to separate between static and dynamic effects. The findings help to interpret sensor data which are captured from real composite structures for structural health monitoring purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Donges A, Noll R (2015) Laser measurement technology: fundamentals and applications. Springer, Heidelberg

    Book  Google Scholar 

  2. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  3. Graff KF (1991) Wave motion in elastic solids. Dover Publications, New York

    MATH  Google Scholar 

  4. Hennings B (2014) Elastische Wellen in faserverstärkten Kunststoffplatten—Modellierung und Berechnung mit spektralen Finiten Elementen. PhD-Thesis, Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

    Google Scholar 

  5. Hennings B, Neumann MN, Lammering R (2013) Continuous mode conversion of Lamb waves in carbon fibre composite plates—occurrence and modelling. In: Chang FK (ed) Proceedings of the 9th international workshop on structural health monitoring, DEStech Publ., Inc., Lancaster, PA, USA

    Google Scholar 

  6. Jones RM (1975) Mechanics of composite materials. Scripta Book Company, Washington DC USA

    Google Scholar 

  7. Lamb H (1914) On waves in an elastic plate. Proc Royal Soc of London Series A XCIII:114–128

    Google Scholar 

  8. Lammering R, Neumann M (2010) Optical measurement techniques for use of defect detection in thin-walled structures. In: Casciati F, Giordano M (eds) Proceedings of the fifth European workshop on structural health monitoring 2010

    Google Scholar 

  9. Leong WH, Staszewski WJ, Lee BC, Scarpa F (2005) Structural health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection. Smart Mater Struct 14:1387–1395

    Article  Google Scholar 

  10. Mallet L, Lee BC, Staszewski WJ, Scarpa F (2004) Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection. Smart Mater Struct 13:261–269

    Article  Google Scholar 

  11. Neumann MN, Lammering R (2012) Error Analysis in Laser Vibrometer Measurements of Lamb Waves. In: DGZfP eV (ed) Proceedings of the sixth European workshop on structural health monitoring (EWSHM 2012), vol 1, pp 729–736

    Google Scholar 

  12. Neumann MN, Hennings B, Lammering R (2013) Identification and avoidance of systematic measurement errors in Lamb wave observation with one-dimensional scanning laser vibrometry. Strain 49(2):95–101

    Article  Google Scholar 

  13. Polytec GmbH (2010) Polytec scanning vibrometer theory manual. Self-publishing, Waldbronn

    Google Scholar 

  14. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton and Fla

    MATH  Google Scholar 

  15. Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  16. Staszewski WJ, Lee BC, Mallet L, Scarpa F (2004) Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater Struct 13:251–260

    Article  Google Scholar 

  17. Staszewski WJ, Lee BC, Traynor R (2007) Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry. Meas Sci Technol 18:727–739

    Article  Google Scholar 

  18. Willberg C, Koch S, Mook G, Pohl J, Gabbert U (2012) Continuous mode conversion of Lamb waves in CFRP plates. Smart Mater Struct 21(7):075022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lammering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Neumann, M.N., Lammering, R. (2018). Continuous Mode Conversion in Experimental Observations. In: Lammering, R., Gabbert, U., Sinapius, M., Schuster, T., Wierach, P. (eds) Lamb-Wave Based Structural Health Monitoring in Polymer Composites. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-319-49715-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49715-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49714-3

  • Online ISBN: 978-3-319-49715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics