Advertisement

Magnetically Bistable Microwires: Properties and Applications for Magnetic Field, Temperature, and Stress Sensing

  • Rastislav VargaEmail author
  • Peter Klein
  • Rudolf Sabol
  • Kornel Richter
  • Radovan Hudak
  • Irenej Polaček
  • Dušan Praslicka
  • Miroslav Šmelko
  • Jozef Hudak
  • Ivan Mikita
  • Giovanni Andrea Badini-Confalonieri
  • Rhimou El Kammouni
  • Manuel Vazquez
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)

Abstract

Amorphous glass-coated microwires with positive magnetostriction are characterized by the magnetic bistability where the switching between the two stable magnetic states appears at the switching field. The switching field is sensitive to the external parameters like magnetic field, temperature, mechanical stress, etc., which gives us possibility to employ the microwires as a miniaturized sensing elements for the mentioned parameters.

Apart from this, there are many other advantages of microwires: the small dimensions (which allows them to be introduced inside various materials), glass-coating (that provides biocompatibility and protection against chemically aggressive environment), magnetic nature (for contactless sensing), simple production process (that allows very efficient production of large amount of wires in a short time), and many more favorable properties.

Within this chapter an overview of various parameters that affect the switching field of bistable microwires is given. Four different possibilities to use bistable microwires as sensors are shown: sensors of magnetic field, wide-range temperature sensors, selected temperature sensors for biomedical applications as well as stress sensor. At the end of each section, real applications of such sensors are demonstrated.

Keywords

Domain Wall Curie Temperature Stress Dependence Switching Field Magnetoelastic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the project NanoCEXmat Nr. ITMS 26220120019, Slovak VEGA Grant Nos. 1/0164/16, 2/0192/13, APVV-0027-11, APVV-0266-10, and APVV-0492-11.

References

  1. 1.
    Hudák, R., Varga, R., Živčák, J., Hudák, J., Blažek, J., Praslička, D.: Application of magnetic microwires in titanium implants—conception of intelligent sensoric implant. In: Madarász, L., Živčák, J. (eds.) Aspects of Computational Intelligence: Theory and Applications Topics in Intelligent Engineering and Informatics, pp. 413–434. Springer, Berlin, Heidelberg (2013)Google Scholar
  2. 2.
    Praslička, D., Blažek, J., Šmelko, M., Hudák, J., Čverha, A., Mikita, I., Varga, R., Zhukov, A.: Possibilities of measuring stress and health monitoring in materials using contact-less sensor based on magnetic microwires. IEEE Trans. Magn. 49, 128–131 (2013). doi: 10.1109/TMAG.2012.2219854 ADSCrossRefGoogle Scholar
  3. 3.
    Vázquez, M.: Advanced magnetic microwires. In: Kronmüller, H., Parkin, S.S.P. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, pp. 2193–2226. Wiley, Chichester (2007)Google Scholar
  4. 4.
    Zhukov, A., Gonzalez, J., Vazquez, M., Larin, V., Torcunov, A.: Nanocrystalline and amorphous magnetic microwires. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, p. 23. Valencia, CA, American Scientific Publishers (2004)Google Scholar
  5. 5.
    Taylor, G.F.: A method of drawing metallic fillaments and a discussion of their properties and uses. Phys. Rev. 23, 655–660 (1924). doi: 10.1103/PhysRev.23.655 ADSCrossRefGoogle Scholar
  6. 6.
    Klein, P., Varga, R., Vojtanik, P., Kovac, J., Ziman, J., Badini-Confalonieri, G.A., Vazquez, M.: Bistable FeCoMoB microwires with nanocrystalline microstructure and increased Curie temperature. J. Phys. D: Appl. Phys. 43(4), 045002-1–045002-6 (2010). doi: 10.1088/0022-3727/43/4/045002 ADSCrossRefGoogle Scholar
  7. 7.
    Komova, E., Varga, M., Varga, R., Vojtanik, P., Bednarcik, J., Kovac, J., Provencio, M., Vazquez, M.: Nanocrystalline glass-coated FeNiMoB microwires. Appl. Phys. Lett. 93(6), 062502-1–062502-3 (2008). doi: 10.1063/1.2969057 ADSCrossRefGoogle Scholar
  8. 8.
    Varga, R., Gamcova, J., Klein, P., Kovac, J., Zhukov, A.: Tailoring the switching field dependence on external parameters in magnetic microwires. IEEE Trans. Magn. 49(1), 30–33 (2013). doi: 10.1109/TMAG.2012.2218224 ADSCrossRefGoogle Scholar
  9. 9.
    Li, L., Bao, C., Feng, X., Liu, Y., Fochan, L.: Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core. Rev. Sci. Instrum. 84(2), 024703 (2013). doi: 10.1063/1.4792593 ADSCrossRefGoogle Scholar
  10. 10.
    Herzer, G.: Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013). doi: 10.1016/j.actamat.2012.10.040 CrossRefGoogle Scholar
  11. 11.
    Michalik, S., Gamcova, J., Bednarčík, J., Varga, R.: In situ structural investigation of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. J. Alloys Compd. 509(7), 3409–3412 (2011). doi: 10.1016/j.jallcom.2010.12.098 CrossRefGoogle Scholar
  12. 12.
    Klein, P., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: Study of domain structure and magnetization reversal after thermal treatments in Fe40Co38Mo4B18 microwires. J. Magn. Magn. Mater. 323(24), 3265–3270 (2011). doi: 10.1016/j.jmmm.2011.07.027 ADSCrossRefGoogle Scholar
  13. 13.
    Klein, P., Varga, R., Vázquez, M.: Stable and fast domain wall dynamics in nanocrystalline magnetic microwire. J. Alloys Compd. 550, 31–34 (2013). doi: 10.1016/j.jallcom.2012.09.098 CrossRefGoogle Scholar
  14. 14.
    Cullity, B.D.: Introduction to Magnetic Materials. Wiley, Hoboken (1972)Google Scholar
  15. 15.
    Varga, R., Garcia, K.L., Zhukov, A., Vazquez, M., Vojtanik, P.: Temperature dependence of the switching field and its distribution function in Fe-based bistable microwire. Appl. Phys. Lett. 83, 2620 (2003). doi: 10.1063/1.1613048 ADSCrossRefGoogle Scholar
  16. 16.
    Klein, P., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: Study of the switching field in amorphous and nanocrystalline FeCoMoB microwire. IEEE Trans. Magn. 46, 357–360 (2010). doi: 10.1109/TMAG.2009.2033348 ADSCrossRefGoogle Scholar
  17. 17.
    Varga, R., Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Supersonic domain wall in magnetic microwires. Phys. Rev. B. 76, 132406-1–132406-3 (2007). doi: 10.1103/PhysRevB.76.132406 ADSCrossRefGoogle Scholar
  18. 18.
    Varga, R., Garcia, K.L., Vazquez, M., Vojtanik, P.: Single-domain wall propagation and damping mechanism during magnetic switching of bistable amorphous microwires. Phys. Rev. Lett. 94, 017201 (2005). doi: 10.1103/PhysRevLett.94.017201 ADSCrossRefGoogle Scholar
  19. 19.
    Varga, R., Richter, K., Zhukov, A., Larin, V.: Domain wall propagation in thin magnetic wires. IEEE Trans. Magn. 44(11), 3925–3930 (2008). doi: 10.1109/TMAG.2008.2001997 ADSCrossRefGoogle Scholar
  20. 20.
    Richter, K., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: The effect of transverse field on fast domain wall dynamics in magnetic microwires. Appl. Phys. Lett. 96, 182507 (2010). doi: 10.1063/1.3428367 ADSCrossRefGoogle Scholar
  21. 21.
    Olivera, J., Sánchez, M.L., Prida, V.M., Varga, R., Zhukova, V., Zhukov, A.P., Hernando, B.: Temperature dependence of the magnetization reversal process and domain structure in Fe77.5-xNixSi7.5B15 magnetic microwires. IEEE Trans. Magn. 44(11), 3946–3949 (2008). doi: 10.1109/TMAG.2008.2002194 ADSCrossRefGoogle Scholar
  22. 22.
    Vazquez, M., Zhukov, A., Pirota, K.R., Varga, R., Garcia, K.L., Luna, C., Provencio, M., Navas, D., Martinez, J.L., Hernandez-Velez, M.: Temperature dependence of remagnetization process in bistable magnetic microwires. J. Non-Cryst. Solids. 329, 123–130 (2003). doi: 10.1016/j.jnoncrysol.2003.08.025 ADSCrossRefGoogle Scholar
  23. 23.
    Vázquez, M., Zhukov, A.P., Garcia, K.L., Pirota, K.R., Ruiz, A., Martinez, J.L., Knobel, M.: Temperature dependence of magnetization reversal in magnetostrictive glass-coated amorphous microwires. Mater. Sci. Eng. A. 375–377, 1145–1148 (2004). doi: 10.1016/j.msea.2003.10.200 CrossRefGoogle Scholar
  24. 24.
    Vazquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D: Appl. Phys. 29, 939–949 (1996). doi: 10.1088/0022-3727/29/4/001 ADSCrossRefGoogle Scholar
  25. 25.
    Gonzalez, J., Blanco, J.M., Vazquez, M., Barandiaran, J.M., Rivero, G., Hernando, A.: Influence of the applied tensile stress on the magnetic properties of current annealed amorphous wires. J. Appl. Phys. 70, 6522–6524 (1991). doi: 10.1063/1.349894 ADSCrossRefGoogle Scholar
  26. 26.
    Aragoneses, P., Blanco, J.M., Dominguez, L., Gonzalez, J., Zhukov, A., Vazquez, M.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D: Appl. Phys. 31(21), 3040–3045 (1998). doi: 10.1088/0022-3727/31/21/009 ADSCrossRefGoogle Scholar
  27. 27.
    O’Handley, R.C.: Magnetostrictin of transition-metal-metalloid glasses: temperature dependence. Phys. Rev. B. 18, 930–938 (1978). doi: 10.1103/PhysRevB.18.930 ADSCrossRefGoogle Scholar
  28. 28.
    Hernando, A., Madurga, V., Núnez de Villavicencio, C., Vazquez, M.: Temperature dependence of the magnetostriction constant of nearly zero magnetostriction amorphous alloys. Appl. Phys. Lett. 45(7), 802 (1984). doi: 10.1063/1.95371 ADSCrossRefGoogle Scholar
  29. 29.
    Richter, K., Varga, R., Zhukov, A.: Influence of the magnetoelastic anisotropy on the domain wall dynamics in bistable amorphous wires. J. Phys.: Condens. Matter. 24, 296003 (2012). doi: 10.1088/0953-8984/24/29/296003 Google Scholar
  30. 30.
    Chen, D.X., Dempsey, N.M., Vazquez, M., Hernando, A.: Propagating domain wall shape and dynamics in iron-rich amorphous wires. IEEE Trans. Magn. 31(1), 781–790 (1995). doi: 10.1109/20.364597 ADSCrossRefGoogle Scholar
  31. 31.
    Kronmüller, H.: Theory of the coercive field in amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 24(2), 159–167 (1981). doi: 10.1016/0304-8853(81)90010-X ADSCrossRefGoogle Scholar
  32. 32.
    Sabol, R., Varga, R., Hudak, J., Blazek, J., Praslicka, D., Vojtanik, P., Badini, G., Vazquez, M.: J. Appl. Phys. 111, 053919 (2012). doi: 10.1063/1.3691961 ADSCrossRefGoogle Scholar
  33. 33.
    Sabol, R., Varga, R., Hudak, J., Blazek, J., Praslicka, D., Vojtanik, P., Badini, G., Vazquez, M.: Stress dependence of the switching field in glass-coated microwires with positive magnetostriction. J. Magn. Magn. Mater. 325, 141–143 (2013). doi: 10.1016/j.jmmm.2012.08.030 ADSCrossRefGoogle Scholar
  34. 34.
    Sabol, R.: Technické aplikácie magnetických mikrodrôtov. Dissertation, Faculty of Aeronautics, Technical University of Kosice (2012)Google Scholar
  35. 35.
    Varga, R., Garcia, K.L., Luna, C., Zhukov, A., Vojtanik, P., Vazquez, M.: Distribution and temperature dependence of switching field in bistable magnetic amorphous microwires. Recent Res. Dev. Non-Cryst. Solids. 3, 85 (2003)Google Scholar
  36. 36.
    Chiriac, H., Ovari, T.A.: Switching field calculations in amorphous microwires with positive magnetostriction. J. Magn. Magn. Mater. 249(1–2), 141–145 (2002). doi: 10.1016/S0304-8853(02)00522-X ADSCrossRefGoogle Scholar
  37. 37.
    Mohri, K., Humprey, F.B., Kawashima, K., Kimura, K., Mizutani, M.: Large Barkhausen and Matteucci effects in FeCoSiB, FeCrSiB, and FeNiSiB amorphous wires. IEEE Trans. Magn. 26(5), 1789 (1990). doi: 10.1109/20.104526 ADSCrossRefGoogle Scholar
  38. 38.
    Vojtanik, P., Degro, J., Nielsen, O.V.: Magnetic after effects in (Co1-xFex)75Si15B10 metallic glasses. Acta Phys. Slov. 42(6), 364–369 (1992)Google Scholar
  39. 39.
    Degro, J., Vojtanik, P., Nielsen, O.V.: Effect of field annealing on compositional dependences of some magnetic properties in (Co1-xFex)75Si15B10 metallic glasses. Phys. Status Solidi A. 132(1), 183–189 (1992). doi: 10.1002/pssa.2211320120 ADSCrossRefGoogle Scholar
  40. 40.
    Ramanujan, R.V., Du, S.W.: Nanocrystalline structures obtained by the crystallization of an amorphous Fe40Ni38B18Mo4 soft magnetic alloy. J. Alloys Compd. 425(1–2), 251–260 (2006). doi: 10.1016/j.jallcom.2005.10.096 CrossRefGoogle Scholar
  41. 41.
    Andrejco, R., Varga, R., Marko, P., Vojtanik, P.: Magnetic properties of amorphous and nanocrystalline Fe-Ni-Mo-B alloys. Czech. J. Phys. 52(1), A113–A116 (2002). doi: 10.1007/s10582-002-0026-z CrossRefGoogle Scholar
  42. 42.
    Li, J., Su, Z., Wei, F., Yang, Z., Hahn, H., Wang, T., Ge, S.: Magnetic properties of nanostructured Fe40Ni38Mo4B18. Chin. Phys. Lett. 16(3), 211–213 (1999). doi: 10.1088/0256-307X/16/3/020 ADSCrossRefGoogle Scholar
  43. 43.
    Vojtanik, P., Varga, R., Andrejco, R., Agudo, P.: The evolution of magnetic properties of Fe73.5Cu1Nb3Si13.5B9 microwires during the devitrification process. J. Magn. Magn. Mater. 249(1–2), 136–140 (2002). doi: 10.1016/S0304-8853(02)00521-8 ADSCrossRefGoogle Scholar
  44. 44.
    Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988). doi: 10.1063/1.342149 ADSCrossRefGoogle Scholar
  45. 45.
    Hernando, B., Olivera, J., Sánchez, M.L., Prida, V.M., Pérez, M.J., Santos, J.D., Gorria, P., Belzunce, F.J.: Soft magnetic properties, magnetoimpedance and torsion-impedance effects in amorphous and nanocrystalline FINEMET alloys: comparison between ribbons and wires. Phys. Met. Metallogr. 102(1), S13–S20 (2006). doi: 10.1134/S0031918X06140043 ADSCrossRefGoogle Scholar
  46. 46.
    Olivera, J., Varga, R., Prida, V.M., Sanchez, M.L., Hernando, B., Zhukov, A.: Domain wall dynamics during the devitrification of Fe73.5CuNb3Si11.5B11 magnetic microwires. Phys. Rev. B. 82(9), 094414 (2010). doi: 10.1103/PhysRevB.82.094414 ADSCrossRefGoogle Scholar
  47. 47.
    McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44(4), 291–433 (1999). doi: 10.1016/S0079-6425(99)00002-X CrossRefGoogle Scholar
  48. 48.
    Li, H.F., Laughlin, D.E., Ramanujan, R.V.: Nanocrystallisation of an Fe44.5Co44.5Zr7B4 amorphous magnetic alloy. Philos. Mag. 86(10), 1355–1372 (2006). doi: 10.1080/14786430500380142 ADSCrossRefGoogle Scholar
  49. 49.
    Mohanta, O., Ghosh, M., Mitra, A., Panda, A.K.: Enhanced ferromagnetic ordering through nanocrystallization in cobalt incorporated FeSiBNb alloys. J. Phys. D: Appl. Phys. 42(6), 065007 (2009). doi: 10.1088/0022-3727/42/6/065007 ADSCrossRefGoogle Scholar
  50. 50.
    Gercsi, Z.S., Mazaleyrat, F., Varga, L.K.: High-temperature soft magnetic properties of Co-doped nanocrystalline alloys. J. Magn. Magn. Mater. 302(2), 454–458 (2006). doi: 10.1016/j.jmmm.2005.10.014 ADSCrossRefGoogle Scholar
  51. 51.
    Škorvanek, I., Švec, P., Marcin, J., Kovac, J., Krenicky, T., Deanko, M.: Nanocrystalline Cu-free HITPERM alloys with improved soft magnetic properties. Phys. Status Solidi A. 196(1), 217–220 (2003). doi: 10.1002/pssa.200306390 ADSCrossRefGoogle Scholar
  52. 52.
    Vlasak, G., Pavuk, M., Mrafko, P., Janičkovič, D., Švec, P., Butvinova, B.: Influence of heat treatment on magnetostrictions and electrical properties of (Fe1Co1)76Mo8Cu1B15. J. Magn. Magn. Mater. 320(20), e837–e840 (2008). doi: 10.1016/j.jmmm.2008.04.168 ADSCrossRefGoogle Scholar
  53. 53.
    Conde, C.F., Conde, A.: Microstructure and magnetic properties of Mo containing Nanoperm-type alloys. Rev. Adv. Mater. Sci. 18(6), 565–571 (2008)Google Scholar
  54. 54.
    Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., McHenry, M.E., Laughlin, D.E.: Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Scr. Mater. 45(7), 781–786 (2001). doi: 10.1016/S1359-6462(01)01096-X CrossRefGoogle Scholar
  55. 55.
    Klein, P., Varga, R., Vazquez, M.: Domain wall dynamics in nanocrystalline microwires. Phys. Status Solidi C. 11(5–6), 1139–1143 (2014). doi: 10.1002/pssc.201300707 CrossRefGoogle Scholar
  56. 56.
    Klein, P., Varga, R., Vazquez, M.: Enhancing the velocity of the single domain wall by current annealing in nanocrystalline FeCoMoB microwires. J. Phys. D: Appl. Phys. 47, 255001 (2014). doi: 10.1088/0022-3727/47/25/255001 ADSCrossRefGoogle Scholar
  57. 57.
    Klein, P., Varga, R., Komanicky, V., Badini-Confalonieri, G.A., Vazquez, M.: Effect of current annealing on domain wall dynamics in bistable FeCoMoB microwires. Solid State Phenom. 233–234, 281–284 (2015). doi: 10.4028/www.scientific.net/SSP.233-234.281 CrossRefGoogle Scholar
  58. 58.
    Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1996). doi: 10.1016/S0079-6425(97)00001-7 CrossRefGoogle Scholar
  59. 59.
    Chiriac, H., Lupu, N., Dobrea, V., Corodeanu, S.: Mechanical properties of magnetic Fe-based and Co-based amorphous wires and microwires. Phys. Status Solidi A. 206, 648–651 (2009). doi: 10.1002/pssa.200881269 ADSCrossRefGoogle Scholar
  60. 60.
    Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000). doi: 10.1016/S1359-6454(99)00300-6 MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kaloshikin, S.D., Tomilin, I.A., Jalnin, B.V., Kekalo, I.B., Shelekhov, E.V.: The influence of amorphous alloys composition on kinetics of crystallization with the nanocrystalline structure formation. Mater. Sci. Forum. 179–181, 557–562 (1995). doi: 10.4028/www.scientific.net/MSF.179-181.557 CrossRefGoogle Scholar
  62. 62.
    Mattern, N., Danzig, A., Muller, M.: Influence of additions on crystallization and magnetic properties of amorphous Fe77.5Si15.5B7. Mater. Sci. Forum. 179–181, 539–544 (1995). doi: 10.4028/www.scientific.net/MSF.179-181.539 CrossRefGoogle Scholar
  63. 63.
    Mattern, N., Danzig, A., Muller, M.: Effect of Cu and Nb on crystallization and magnetic properties of amorphous Fe77.5Si15.5B7 alloys. Mater. Sci. Eng. A. 194(1), 77–85 (1995). doi: 10.1016/0921-5093(94)09666-X CrossRefGoogle Scholar
  64. 64.
    Zhang, Y.R., Ramanujan, R.V.: The effect of niobium alloying additions on the crystallization of a Fe–Si–B–Nb alloy. J. Alloys Compd. 403(1–2), 197–205 (2005). doi: 10.1016/j.jallcom.2005.05.019 CrossRefGoogle Scholar
  65. 65.
    Naohara, T.: The role of Nb in the nanocrystallization of amorphous Fe-Si-B-Nb alloys. Acta Mater. 46(2), 397–404 (1998). doi: 10.1016/S1359-6454(97)00271-1 CrossRefGoogle Scholar
  66. 66.
    Klein, P., Richter, K., Varga, R., Vazquez, M.: Frequency and temperature dependencies of the switching field in glass-coated FeSiBCr microwire. J. Alloys Compd. 569, 9–12 (2013). doi: 10.1016/j.jallcom.2013.03.040 CrossRefGoogle Scholar
  67. 67.
    Varga, R., Vojtanik, P., Kovac, J., Agudo, P., Vazquez, M., Lovas, A.: Influence of Cr on magnetic and structural properties of amorphous Fe80-xCrxSi6B14 (x=0–14) alloys. Acta Phys. Slovaca. 49(5), 901–904 (1999)Google Scholar
  68. 68.
    Lupu, N., Chiriac, H., Corodeanu, S., Ababei, G.: Development of Fe–Nb–Cr–B glassy alloys with low curie temperature and enhanced soft magnetic properties. IEEE Trans. Magn. 47(10), 3791–3794 (2011). doi: 10.1109/TMAG.2011.2158528 ADSCrossRefGoogle Scholar
  69. 69.
    Varga, R., Vojtanik, P.: Temperature dependence of the magnetic properties of amorphous Fe80-xCrxSi6B14 (x=0–14) alloys. J. Magn. Magn. Mater. 196–197, 230–232 (1999). doi: 10.1016/S0304-8853(98)00777-X CrossRefGoogle Scholar
  70. 70.
    Makino, A., Kubota, T., Chang, C., Makabe, M., Inoue, A.: FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness. J. Magn. Magn. Mater. 320(20), 2499–2503 (2008). doi: 10.1016/j.jmmm.2008.04.063 ADSCrossRefGoogle Scholar
  71. 71.
    Richter, K., Varga, R., Infante, G., Badini-Confalonieri, G.A., Vazquez, M.: Domain wall dynamics in thin magnetic wires under the influence of transversal magnetic field. IEEE Trans. Magn. 46(2), 210–212 (2010). doi: 10.1109/TMAG.2009.2032517 ADSCrossRefGoogle Scholar
  72. 72.
    Infante, G., Varga, R., Badini-Confalonieri, G.A., Vázquez, M.: Locally induced domain wall damping in a thin magnetic wire. Appl. Phys. Lett. 95, 012503 (2009). doi: 10.1063/1.3174919 ADSCrossRefGoogle Scholar
  73. 73.
    Varga, R., Infante, G., Badini-Confalonieri, G.A., Vázquez, M.: Diffusion-damped domain wall dynamics. J. Phys.: Conf. Ser. 200, 042026 (2010). doi: 10.1088/1742-6596/200/4/042026 Google Scholar
  74. 74.
    Varga, R., Infante, G., Richter, K., Vázquez, M.: Anomalous effects in the domain-wall dynamics in magnetic microwires. Phys. Status Solidi A. 208, 509–514 (2011). doi: 10.1002/pssa.201026371 ADSCrossRefGoogle Scholar
  75. 75.
    Chateau, E., Remy, L.: Oxidation-assisted creep damage in a wrought nickel-based superalloy: experiments and modelling. Mater. Sci. Eng. A. 527(7–8), 1655–1664 (2010). doi: 10.1016/j.msea.2009.10.054 CrossRefGoogle Scholar
  76. 76.
    Pollock, T.M., Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry microstructure and properties. J. Propul. Power. 22(2), 361–374 (2006). doi: 10.2514/1.18239 CrossRefGoogle Scholar
  77. 77.
    Romankiw, L.T.: A path: from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim. Acta. 42(20–22), 2985–3005 (1997). doi: 10.1016/S0013-4686(97)00146-1 CrossRefGoogle Scholar
  78. 78.
    Zhang, Z.Y., Liang, B.N.: Tribological properties of FeNiCr coatings with the addition of La2O3 on 1045 carbon steel. Adv. Mater. Res. 852, 219–222 (2014). doi: 10.4028/www.scientific.net/AMR.852.219 CrossRefGoogle Scholar
  79. 79.
    Du Trémolet De Lacheisserie, E., Krishnan, R.: An improved capacitance method of measuring thermal expansion and magnetostriction of amorphous ribbons: application to FeNiCr metallic glasses. Rev. Phys. Appl. 18(11), 727–730 (1983)CrossRefGoogle Scholar
  80. 80.
    Krishnan, R., Dancygier, M., Tarhouni, M.: Magnetization studies of Cr concentration effects in amorphous Fe–Ni–Cr–B–Si ribbons. J. Appl. Phys. 53, 7768–7770 (1982). doi: 10.1063/1.330200 ADSCrossRefGoogle Scholar
  81. 81.
    Chen, W., Zhou, S., Chen, J.: Magnetic properties of Fe- and FeNi-based amorphous composite ribbons. J. Mater. Sci. Technol. 16(02), 151–152 (2000)Google Scholar
  82. 82.
    Lovas, A., Böhönyey, A., Kiss, L.F., Kováč, J., Németh, P.: Some new results on amorphous Curie-temperature relaxation. Mater. Sci. Eng. A. 375–377, 1097–1100 (2004). doi: 10.1016/j.msea.2003.10.143 CrossRefGoogle Scholar
  83. 83.
    Németh, P., Böhönyey, A., Tichý, G., Kiss, L.F.: Anomalous Curie-point relaxation in a Cr-containing amorphous alloy. J. Magn. Magn. Mater. 320(5), 719–723 (2008). doi: 10.1016/j.jmmm.2007.08.025 ADSCrossRefGoogle Scholar
  84. 84.
    Alvarez-Alonso, P., Santos, J.D., Perez, M.J., Sanchez-Valdes, C.F., Sanchez Llamazares, J.L., Gorria, P.: The substitution effect of chromium on the magnetic properties of (Fe1-xCrx)80Si6B14 metallic glasses (0.02≤x≤0.14). J. Magn. Magn. Mater. 347, 75–78 (2013). doi: 10.1016/j.jmmm.2013.07.048 ADSCrossRefGoogle Scholar
  85. 85.
    Hilzinger, R., Rodewald, W.: Magnetic Materials: Fundamentals, Products, Properties, Applications. Publicis MCD Verlag, Erlangen (2013)Google Scholar
  86. 86.
    Antonione, C., Battezzati, L., Lucci, A., Riontino, G., Tabasso, M., Venturello, G.: Effect of composition in (Fe,Ni,Cr)(P,B) and (Fe,Ni,Mo)B metallic glasses. J. Phys. Colloq. 41, C8-131–C8-134 (1980). doi: 10.1051/jphyscol:1980834 CrossRefGoogle Scholar
  87. 87.
    Chiriac, H., Ovári, T.A., Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B. 52, 10104–10113 (1995). doi: 10.1103/PhysRevB.52.10104 ADSCrossRefGoogle Scholar
  88. 88.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33(10), 1161–1168 (2000). doi: 10.1088/0022-3727/33/10/305 ADSCrossRefGoogle Scholar
  89. 89.
    Larin, V.S., Torcunov, A.V., Zhukov, A., Gonzalez, J., Vazquez, M., Panina, L.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1–2), 39–45 (2002). doi: 10.1016/S0304-8853(02)00501-2 ADSCrossRefGoogle Scholar
  90. 90.
    Klein, P., Varga, R., Vazquez, M.: Temperature dependence of magnetization process in bistable amorphous and nanocrystalline FeCoMoB microwires. Acta Phys. Pol. A. 118, 809–810 (2010)CrossRefGoogle Scholar
  91. 91.
    Hernando, A., Marin, P., Vazquez, M., Barandiaran, J.M., Herzer, G.: Thermal dependence of coercivity in soft magnetic nanocrystals. Phys. Rev. B. 58(1), 366–370 (1998). doi: 10.1103/PhysRevB.58.366 ADSCrossRefGoogle Scholar
  92. 92.
    Škorvánek, I., O’Handley, R.C.: Fine-particle magnetism in nanocrystalline Fe-Cu-Nb-Si-B at elevated temperatures. J. Magn. Magn. Mater. 140-144(1), 467–468 (1995). doi: 10.1016/0304-8853(94)00734-9 CrossRefGoogle Scholar
  93. 93.
    Škorvánek, I., Kováč, J., Kötzler, J.: Temperature evolution of coercive field and thermal relaxation effects in nanocrystalline FeNbB alloys. J. Magn. Magn. Mater. 272–276, 1503–1505 (2004). doi: 10.1016/j.jmmm.2003.12.553
  94. 94.
    Franco, V., Conde, C.F., Conde, A., Kiss, L.F., Kemény, T.: Transition to superparamagnetism in a Cr-containing Finemet-type alloy. IEEE Trans. Magn. 38(5), 3069–3074 (2002). doi: 10.1109/TMAG.2002.802115 ADSCrossRefGoogle Scholar
  95. 95.
    Varga, R., Vojtanik, P., Lovas, A.: Time and thermal stability of magnetic properties of amorphous Fe80TM3B17 alloys. J. Phys. IV (France). 08, Pr2-63–Pr2-66 (1998)Google Scholar
  96. 96.
    Gonzalez, J., Zhukov, A., Zhukova, V., Cobeno, A.F., Blanco, J.M., de Arellano-Lopez, A.R., Lopez-Pombero, S., Martinez-Fernandez, J., Larin, V., Torcunov, A.: High coercivity of partially devitrified glass-coated Finemet microwires: effect of geometry and thermal treatment. IEEE Trans. Magn. 36(5), 3015–3017 (2000). doi: 10.1109/20.908660 ADSCrossRefGoogle Scholar
  97. 97.
    Hudak, R., Varga, R., Polacek, I., Klein, P., Skorvanek, I., Komanicky, V., del Real, R.P., Vazquez, M.: Addition of a Molybdenum into a amorphous glass-coated microwires usable as a temperature sensors in biomedical application. Phys. Status Solidi A. 213, 377–383 (2015)CrossRefGoogle Scholar
  98. 98.
    Bergmann, G., Graichen, F., Dymke, J., Rohlmann, A., Duda, G.N., Damm, R.: High-tech hip implant for wireless temperature measurements in vivo. PLoS One. 7(8), e43489 (2012). doi: 10.1371/journal.pone.0043489 ADSCrossRefGoogle Scholar
  99. 99.
    Sabol, R., Rovnak, M., Klein, P., Vazquez, M., Varga, R.: Mechanical stress dependence of the switching field in amorphous microwires. IEEE Trans. Magn. 51, 2000304-1–2000304-4 (2015). doi: 10.1109/TMAG.2014.2357580 CrossRefGoogle Scholar
  100. 100.
    Hudak, R., Varga, R., Hudak, J., Praslicka, D., Polacek, I., Klein, P., El Kammouni, R., Vazquez, M.: Influence of fixation on magnetic properties of glass-coated magnetic microwires for biomedical applications. IEEE Trans. Magn. 51(1), 5200104 (2015). doi: 10.1109/TMAG.2014.2359498 CrossRefGoogle Scholar
  101. 101.
    Hudak, R., Varga, R., Hudak, J., Praslicka, D., Blazek, J., Polacek, I., Klein, P.: Effect of the fixation patterns on magnetic characteristics of amorphous glass-coated sensoric microwires. Acta Phys. Pol. A. 126(1), 417–418 (2014). doi: 10.12693/APhysPolA.126.417 CrossRefGoogle Scholar
  102. 102.
    Gamcova, J., Varga, R., Hernando, B., Zhukov, A.: The study of magnetization process in amorphous FeNiSiB microwires. Acta Phys. Pol. A. 118(5), 807–808 (2010)CrossRefGoogle Scholar
  103. 103.
    Komova, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Frequency dependence of the single domain wall switching field in glass-coated microwires. J. Phys.: Condens. Matter. 19(23), 236229 (2007). doi: 10.1088/0953-8984/19/23/236229 ADSGoogle Scholar
  104. 104.
    Varga, R.: Magnetization processes in glass-coated microwires with positive magnetostriction. Acta Phys. Slovaca. 62(5), 411–518 (2012). doi: 10.2478/v10155-012-0002-5 Google Scholar
  105. 105.
    Komova, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Stress dependence of the switching field in glass coated microwires. Acta Phys. Pol. A. 113(1), 135–138 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    Olivera, J., Varga, R., Anaya, J., Zhukov, A.: Stress dependence of switching field during the devitrification of Finemet-based magnetic microwires. Key Eng. Mater. 543, 495–498 (2013). doi: 10.4028/www.scientific.net/KEM.543.495 CrossRefGoogle Scholar
  107. 107.
    Kronmüller, H., Fähnle, M.: Micromagnetism and the Microstructure of the Ferromagnetic Solids. Cambridge University Press, Cambridge (2003)Google Scholar
  108. 108.
    Olivera, J., González, M., Fuente, J.V., Varga, R., Zhukov, A., Anaya, J.J.: An embedded stress sensor for concrete shm based on amorphous ferromagnetic microwires. Sensors. 14, 19963–19978 (2014). doi: 10.3390/s141119963 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rastislav Varga
    • 1
    • 2
    Email author
  • Peter Klein
    • 1
    • 2
  • Rudolf Sabol
    • 1
    • 2
  • Kornel Richter
    • 1
  • Radovan Hudak
    • 3
  • Irenej Polaček
    • 3
  • Dušan Praslicka
    • 4
  • Miroslav Šmelko
    • 4
  • Jozef Hudak
    • 4
  • Ivan Mikita
    • 4
  • Giovanni Andrea Badini-Confalonieri
    • 5
  • Rhimou El Kammouni
    • 5
  • Manuel Vazquez
    • 5
  1. 1.Faculty of ScienceInstitute of Physics, UPJSKošiceSlovakia
  2. 2.RVmagnetics s.r.o.KosiceSlovakia
  3. 3.Department of Biomedical Engineering and Measurement, Faculty of Mechanical EngineeringTechnical University of KošiceKošiceSlovakia
  4. 4.Department of Aviation Technical Studies, Faculty of AeronauticsTechnical University of KošiceKošiceSlovakia
  5. 5.Instituto de Ciencia de Materiales de Madrid, CSICMadridSpain

Personalised recommendations