Advertisement

Tunable Electric Polarization of Magnetic Microwires for Sensing Applications

  • Larissa V. PaninaEmail author
  • Dmitriy P. Makhnovskiy
  • Abdukarim Dzhumazoda
  • Svetlana V. Podgornaya
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)

Abstract

A ferromagnetic microwire arranged as a resonant antenna may have unusual properties of its electric dipole polarization. At the vicinity of the resonance the wire polarization is sensitive to all the losses including magnetic losses. The transfer mechanism is based on the magnetoimpedance effect which requires a specific magnetic structure of a helical type. Scattering of microwaves from such a wire can be modulated with a low frequency magnetic field and the amplitude of this modulation near the antenna resonance can sensitively change in the presence of the external stimuli such as a dc magnetic field or a mechanical stress/strain. Therefore, the wire behaves as a sensor which can be embedded inside materials to monitor its internal state.

Keywords

Surface Impedance Polarization Electric Wire Surface Longitudinal Electric Field Impedance Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yang, S., Lozano, K., Lomeli, A., Foltz, H.D., Jones, R.: Composites Part A. 36, 691 (2005)CrossRefGoogle Scholar
  2. 2.
    Qin, F.X., Peng, H.X., Phan, M.H., Panina, L.V., Ipatov, M., Zhukov, A., Gonzalez, J.: Smart composites with short ferromagnetic microwires for microwave applications. IEEE Trans. Magn. 47, 4481–4484 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Vijayakumar, K., Wylie, S.R., Cullen, J.D., Wright, C.C., Ai-Shamma’a, A.I.: J. Phys.: Conf. Ser. 178, 012033 (2009)Google Scholar
  4. 4.
    Qin, F.X., Peng, H.X., Pankratov, N., Phan, M.H., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J. Appl. Phys. 108, 044510 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Yuan, B., Yu, L., Sheng, L., An, K., Zhao, X.: J. Phys. D: Appl. Phys. 45, 235108 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Chiriac, H., Pop, G., Ovari, T.-A., Barariu, F., Vazquez, M., Zhukov, A.P.: IEEE Trans. Magn. 33, 3346 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Cobeno, F., Blanco, J.M., Zhukov, A.P., Gonzalez, J.: J. Magn. Magn. Mater. 249(1–2), 396 (2002)ADSGoogle Scholar
  8. 8.
    Zhukov A.P., Blanco J.M., Gonzalez J., Garcia Prieto M.J., Pina E., Vazquez M.: J. Appl. Phys. 87, 1402 (2000)Google Scholar
  9. 9.
    Larin, V.S., Torcunov, A.V., Zhukov, A.P., Gonzalez, J., Vazquez, M., Panina, L.V.: J. Magn. Magn. Mater. 249(1–2), 39 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magneto-impedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38, 3090–3092 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Herrero-Gomez, C., Marın, P., Hernando, A.: Appl. Phys. Lett. 103, 142414 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Kurlyandskaya, G.V., Sanchez, M.L., Hernando, B., Prida, V.M., Gorria, P., Tejedor, M.: Appl. Phys. Lett. 82, 3053 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Marın, P., Marcos, M., Hernando, A.: Appl. Phys. Lett. 96, 262512 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Makhnovskiy, D.P., Zamorovskii, V., Summerscales, J.: Composites Part A. 61, 216 (2014)CrossRefGoogle Scholar
  15. 15.
    Kraus, L., Frait, Z., Pirota, K.R., Chiriac, H.: Giant magnetoimpedance in glass-covered amorphous microwires. J. Magn. Magn. Mater. 254-255, 399–403 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Mandal, K., Puerta, S., Vazquez, M., Hernando, A.: The frequency and stress dependence of giant magnetoimpedance in amorphous microwires. IEEE Trans. Magn. 36, 3257–3259 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Panina, L.V., Mohri, K.: Appl. Phys. Lett. 65, 1189 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Lagarkov, A.N., Sarychev, A.K.: Phys. Rev. B. 53, 6318 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Lagarkov, A.N., Matytsin, S.M., Rozanov, K.N., Sarychev, A.K.: J. Appl. Phys. 84, 3806 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Makhnovskiy, D.P., Panina, L.V., Mapps, D.J.: Phys. Rev. B. 63, 144424 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Makhnovskiy, D.P., Panina, L.V., Mapps, D.J., Sarychev, A.K.: Phys. Rev. B. 64, 134205 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Sarychev, A.K., Shalaev, V.M.: Phys. Rep. 335, 275–371 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Sarychev, A.K., McPhedran, R.C., Shalaev, V.M.: Phys. Rev. B. 62, 8531 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  25. 25.
    van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York (1981)Google Scholar
  26. 26.
    Serdyukov, A.N., Semchenko, I.V., Tretyakov, S.A., Sihvola, A.: Electromagnetics of Bi-anisotropic Materials: Theory and Applications. Gordon and Breach Science, Amsterdam (2001)Google Scholar
  27. 27.
    Tretyakov, S.A.: Analytical Modeling in Applied Electromagnetics. Artech House, Norwood (2003)zbMATHGoogle Scholar
  28. 28.
    Herrero-Gomez, C., Aragon, A.M., Hernando-Rydings, M., Marın, P., Hernando, A.: Appl. Phys. Lett. 105, 092405 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Makhnovskiy, D.P., Panina, L.V.: J. Appl. Phys. 93, 4120 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Panina, L.V., Grigorenko, A.N., Makhnovskiy, D.P.: Phys. Rev. B. 66, 155411 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    King, R., Smith, G.: Antennas in Matter. In: Fundamentals, Theory and Applications. The MIT Press, Cambridge (1981)Google Scholar
  32. 32.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, New York (1975)Google Scholar
  33. 33.
    Ipatov, M., Zhukova, V., Zhukov, A., González, J., Zvezdin, A.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B. 81, 134421–134428 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Lofland, S.E., Baghat, S.M., Garcia-Beneytez, J.M., et al.: Low field microwave magnetoimpedance in amorphous microwires. J. Appl. Phys. 85, 4442 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    Popov, V., Zhukova, V., Ipatov, M., García, C., Gonzalez, J., Ponomarenko, V., Berzhansky, V., Vinogorodsky, D., Zhukov, A.: Studies of giant magnetoimpedance effect of Co-rich microwires in wide frequency range. Phys. Status Solidi A. 206, 671–673 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Sandacci, S., Makhnovskiy, D.P., Panina, L.V., Larin, V.: Valve–like behavior of the magnetoimpedance in the GHz range. J. Magn. Magn. Mater. 272/276, 1855–1857 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter. 10, 4785–4809 (1998)ADSGoogle Scholar
  38. 38.
    Reynet, O., Adent, A.-L., Deprot, S., Acher, O., Latrach, M.: Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites. Phys. Rev. B. 66, 94412–94421 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. B. 84, 4184–4187 (2000)ADSGoogle Scholar
  40. 40.
    Makhnovskiy, D.P., Panina, L.V., Garcia, C., Zhukov, A., Gonzalez, J.: Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory. Phys. Rev B. 74, 064205-064215 (2006)Google Scholar
  41. 41.
    Hong Duong, V., Sato Turtelli, R., Grossinger, R., Hiebl, K., Rogl, P.: IEEE Trans. Magn. 32, 4821 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    Trémolet de Lacheisserie, E., Gignous, D., Schlenker, M.: Magnetism: Materials and Applications, vol. 2. Springer, New York (2005)CrossRefGoogle Scholar
  43. 43.
    Zhukova V., Blanco J.M., Ipatov M., Zhukov A., Garcia C., Gonzalez J., Varga R., Torcunov A. (2007) Sens. Actuators, B: 318 318Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Larissa V. Panina
    • 1
    • 2
    Email author
  • Dmitriy P. Makhnovskiy
    • 3
  • Abdukarim Dzhumazoda
    • 1
  • Svetlana V. Podgornaya
    • 1
  1. 1.National University of Science and Technology, MISISMoscowRussian Federation
  2. 2.Institute for Design Problems in MicroelectronicsMoscowRussian Federation
  3. 3.Robat Ltd.MacclesfieldUK

Personalised recommendations