Skip to main content

Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires

  • Chapter
  • First Online:
High Performance Soft Magnetic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 252))

  • 1016 Accesses

Abstract

Surface magnetization reversal of Co-rich and Fe-rich amorphous glass covered microwires in the presence of torsion mechanical stress has been studied by magneto-optical Kerr effect. The dependence of the angle of the helical anisotropy on the applied torsion stress has been obtained based on the analysis of the magneto-optical experimental results. The value of the limit angle of the torsion stress induced helical anisotropy has been found. The influence of temperature on surface magnetic structure and magnetization reversal process under electric current and external magnetic field has been investigated. It was found different types of domain structures depending on the temperature and the microwire composition. These types are characterized by the different domain period and the angle of the inclination of domain walls. It was established the direct correlation between surface domain structures and hysteresis loops. It was observed original mechanism of the domain structure transformation—unusual change in the domain structure without movement of domain walls. It was found that the high-frequency electric current at room temperature has a great and essential influence on the surface magnetization reversal and surface domain structure. The induced formation and transformation of the surface magnetic structure are key processes that determine the stable operation of giant magneto-impedance devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)

    Article  ADS  Google Scholar 

  2. Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers, New York (2009)

    Google Scholar 

  3. Chiriac, H., Ovari, T.A.: Switching field calculations in amorphous microwires with positive magnetostriction. J. Magn. Magn. Mater. 249, 141–145 (2002)

    Article  ADS  Google Scholar 

  4. Buznikov, N.A., Antonov, A.S., Granovsky, A.B.: Asymmetric magnetoimpedance in amorphous microwires due to bias current: effect of torsional stress. J. Magn. Magn. Mater. 355, 289–294 (2014)

    Article  ADS  Google Scholar 

  5. Xing, D., Chen, D., Liu, F., Liu, J., Shen, H., Ning, Z., Cao, F., SunT, J.: Torsion dependence of domain transition and MI effect of melt-extracted Co68.15Fe4.35Si2.25B13.25Nb1Cu1 microwires. Adv. Mater. Sci. Eng. 2015, 1–6 (2015)

    Google Scholar 

  6. Gonzalez, J., Chen, I.P., Blanco, J.M., Zhukov, A.: Effect of applied mechanical stressses on the impedance response in amorphous microwires with vanishing magnetostriction. Phys. Status Solidi A. 189, 599–608 (2002)

    Article  ADS  Google Scholar 

  7. Phan, A.H., Yua, S.C., Kim, C.G., Vazquez, M.: Origin of asymmetrical magnetoimpedance in a Co-based amorphous microwire due to dc bias current. Appl. Phys. Lett. 83, 2871–2873 (2003)

    Article  ADS  Google Scholar 

  8. Betancourt, I.: Magnetization dynamics of amorphous ribbons and wires studied by inductance spectroscopy. Materials. 4, 37–54 (2011)

    Article  ADS  Google Scholar 

  9. Betancourt, I., Hrkac, G., Schrefl, T.: Micromagnetic study of magnetic domain structure and magnetization reversal in amorphous wires with circular anisotropy. J. Magn. Magn. Mater. 323, 1134–1139 (2011)

    Article  ADS  Google Scholar 

  10. Sablik, M.J., Jiles, D.C.: A modified Stoner-Wohlfarth computational model for hysteretic magnetic properties in a ferromagnetic composite rod under torsion. J. Phys. D: Appl. Phys. 32, 1971–1983 (1999)

    Article  ADS  Google Scholar 

  11. Sablik, M.J., Jiles, D.C.: Modeling the effects of torsional stress on hysteretic magnetization. IEEE Trans. Magn. 35, 498–504 (1999)

    Article  ADS  Google Scholar 

  12. Sixtus, K.J., Tonks, L.: Propagation of large Barkhausen discontinuities. Phys. Rev. 42, 419 (1932)

    Article  ADS  Google Scholar 

  13. Chizhik, A., Stupakiewicz, A., Maziewski, A., Zhukov, A., Gonzalez, J., Blanco, J.M.: Direct observation of giant Barkhausen jumps in magnetic microwires. Appl. Phys. Lett. 97, 012502 (2010)

    Article  ADS  Google Scholar 

  14. Chizhik, A., Zablotskii, V., Stupakiewicz, A., Dejneka, A., Polyakova, T., Tekielak, M., Maziewski, A., Zhukov, A., Gonzalez, J.: Circular domains nucleation in magnetic microwires. Appl. Phys. Lett. 102, 202406 (2013)

    Article  ADS  Google Scholar 

  15. Zhukov, A., Blanco, J.M., Ipatov, M., Chizhik, A., Zhukova, V.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012)

    Article  ADS  Google Scholar 

  16. Hudak, J., Blazek, J., Cverha, A., Gonda, P., Varga, R.: Improved Sixtus–Tonks method for sensing the domain wall propagation direction. Sens. Actuators A. 156, 292–295 (2009)

    Article  Google Scholar 

  17. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  18. Stupakiewicz, A., Chizhik, A., Tekielak, M., Zhukov, A., Gonzalez, J., Maziewski, A.: Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy. Rev. Sci. Instrum. 85, 103702 (2014)

    Article  ADS  Google Scholar 

  19. Chizhik, A., Gonzalez, J., Zhukov, A., Blanco, J.M.: Magnetization reversal of Co-rich wires in circular magnetic field. J. Appl. Phys. 91, 537–539 (2002)

    Article  ADS  Google Scholar 

  20. Chizhik, A., Zhukov, A., Blanco, J.M., Gonzalez, J., Gawronski, P.: Experimental determination of limit angle of helical anisotropy in amorphous magnetic microwires. J. Magn. Magn. Mater. 321, 803–805 (2009)

    Article  ADS  Google Scholar 

  21. Bertotti, G.: Hysteresis in Magnetism. Academic Press, San Diego (1998)

    Google Scholar 

  22. Chizhik, A., Gonzalez, J.: Magnetic Microwires: A Magneto-Optical Study. Pan Stanford Publishing Pte. Ltd., Singapore (2014)

    Google Scholar 

  23. Chizhik, A., Zablotskii, V., Stupakiewicz, A., Gómez-Polo, C., Maziewski, A., Zhukov, A., Gonzalez, J., Blanco, J.M.: Phys. Rev. B. 82, 212401–212404 (2010)

    Article  ADS  Google Scholar 

  24. Chizhik, A., Gonzalez, J., Zhukov, A., Blanco, J.: Circular magnetic bistability in Co-rich amorphous microwires. J. Phys. D. Appl. Phys. 36, 419–422 (2003)

    Article  ADS  Google Scholar 

  25. Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Zvezdin, A.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B. 81, 134421 (2010)

    Article  ADS  Google Scholar 

  26. Valenzuela, R., Zamorano, R., Alvarez, G., Gutiérrez, M.P., Montiel, H.: Magnetoimpedance, ferromagnetic resonance, and low field microwave absorption in amorphous ferromagnets. J. Non-Cryst. Solids. 353, 768–772 (2007)

    Article  ADS  Google Scholar 

  27. Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magnetoimpedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38, 3090–3092 (2002)

    Article  ADS  Google Scholar 

  28. Tousignant, M., Zabeida, M.O., Rudkowska, G., Yelon, A.: Investigation of surface effect on giant magnetoimpedance in microwires. J. Magn. Magn. Mater. 349, 232–234 (2014)

    Article  ADS  Google Scholar 

  29. Nakayama, K., Chiba, T., Tsukimoto, S., Yokoyama, Y., Shima, T., Yabukami, S.: Ferromagnetic resonance in soft-magnetic metallic glass nanowire and microwire. J. Appl. Phys. 105, 202403 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) under Project No. MAT2013-47231-C2-1-P, the Basque Government under Saiotek 13 PROMAGMI (S-PE13UN014) and DURADMAG (S-PE13UN007) projects. A.C. acknowledges the financial support of Program of Mobility of the Investigating Personnel Basque Government MV-2015-1-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chizhik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chizhik, A., Stupakiewicz, A., Gonzalez, J. (2017). Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires. In: Zhukov, A. (eds) High Performance Soft Magnetic Materials. Springer Series in Materials Science, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-49707-5_5

Download citation

Publish with us

Policies and ethics