Advertisement

Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires

  • A. ChizhikEmail author
  • A. Stupakiewicz
  • J. Gonzalez
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)

Abstract

Surface magnetization reversal of Co-rich and Fe-rich amorphous glass covered microwires in the presence of torsion mechanical stress has been studied by magneto-optical Kerr effect. The dependence of the angle of the helical anisotropy on the applied torsion stress has been obtained based on the analysis of the magneto-optical experimental results. The value of the limit angle of the torsion stress induced helical anisotropy has been found. The influence of temperature on surface magnetic structure and magnetization reversal process under electric current and external magnetic field has been investigated. It was found different types of domain structures depending on the temperature and the microwire composition. These types are characterized by the different domain period and the angle of the inclination of domain walls. It was established the direct correlation between surface domain structures and hysteresis loops. It was observed original mechanism of the domain structure transformation—unusual change in the domain structure without movement of domain walls. It was found that the high-frequency electric current at room temperature has a great and essential influence on the surface magnetization reversal and surface domain structure. The induced formation and transformation of the surface magnetic structure are key processes that determine the stable operation of giant magneto-impedance devices.

Keywords

Domain Wall Magnetization Reversal Axial Magnetic Field Torsion Stress Magnetic Domain Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) under Project No. MAT2013-47231-C2-1-P, the Basque Government under Saiotek 13 PROMAGMI (S-PE13UN014) and DURADMAG (S-PE13UN007) projects. A.C. acknowledges the financial support of Program of Mobility of the Investigating Personnel Basque Government MV-2015-1-15.

References

  1. 1.
    Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers, New York (2009)Google Scholar
  3. 3.
    Chiriac, H., Ovari, T.A.: Switching field calculations in amorphous microwires with positive magnetostriction. J. Magn. Magn. Mater. 249, 141–145 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Buznikov, N.A., Antonov, A.S., Granovsky, A.B.: Asymmetric magnetoimpedance in amorphous microwires due to bias current: effect of torsional stress. J. Magn. Magn. Mater. 355, 289–294 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Xing, D., Chen, D., Liu, F., Liu, J., Shen, H., Ning, Z., Cao, F., SunT, J.: Torsion dependence of domain transition and MI effect of melt-extracted Co68.15Fe4.35Si2.25B13.25Nb1Cu1 microwires. Adv. Mater. Sci. Eng. 2015, 1–6 (2015)Google Scholar
  6. 6.
    Gonzalez, J., Chen, I.P., Blanco, J.M., Zhukov, A.: Effect of applied mechanical stressses on the impedance response in amorphous microwires with vanishing magnetostriction. Phys. Status Solidi A. 189, 599–608 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Phan, A.H., Yua, S.C., Kim, C.G., Vazquez, M.: Origin of asymmetrical magnetoimpedance in a Co-based amorphous microwire due to dc bias current. Appl. Phys. Lett. 83, 2871–2873 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Betancourt, I.: Magnetization dynamics of amorphous ribbons and wires studied by inductance spectroscopy. Materials. 4, 37–54 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Betancourt, I., Hrkac, G., Schrefl, T.: Micromagnetic study of magnetic domain structure and magnetization reversal in amorphous wires with circular anisotropy. J. Magn. Magn. Mater. 323, 1134–1139 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Sablik, M.J., Jiles, D.C.: A modified Stoner-Wohlfarth computational model for hysteretic magnetic properties in a ferromagnetic composite rod under torsion. J. Phys. D: Appl. Phys. 32, 1971–1983 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Sablik, M.J., Jiles, D.C.: Modeling the effects of torsional stress on hysteretic magnetization. IEEE Trans. Magn. 35, 498–504 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Sixtus, K.J., Tonks, L.: Propagation of large Barkhausen discontinuities. Phys. Rev. 42, 419 (1932)ADSCrossRefGoogle Scholar
  13. 13.
    Chizhik, A., Stupakiewicz, A., Maziewski, A., Zhukov, A., Gonzalez, J., Blanco, J.M.: Direct observation of giant Barkhausen jumps in magnetic microwires. Appl. Phys. Lett. 97, 012502 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Chizhik, A., Zablotskii, V., Stupakiewicz, A., Dejneka, A., Polyakova, T., Tekielak, M., Maziewski, A., Zhukov, A., Gonzalez, J.: Circular domains nucleation in magnetic microwires. Appl. Phys. Lett. 102, 202406 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Zhukov, A., Blanco, J.M., Ipatov, M., Chizhik, A., Zhukova, V.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Hudak, J., Blazek, J., Cverha, A., Gonda, P., Varga, R.: Improved Sixtus–Tonks method for sensing the domain wall propagation direction. Sens. Actuators A. 156, 292–295 (2009)CrossRefGoogle Scholar
  17. 17.
    Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)Google Scholar
  18. 18.
    Stupakiewicz, A., Chizhik, A., Tekielak, M., Zhukov, A., Gonzalez, J., Maziewski, A.: Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy. Rev. Sci. Instrum. 85, 103702 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Chizhik, A., Gonzalez, J., Zhukov, A., Blanco, J.M.: Magnetization reversal of Co-rich wires in circular magnetic field. J. Appl. Phys. 91, 537–539 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Chizhik, A., Zhukov, A., Blanco, J.M., Gonzalez, J., Gawronski, P.: Experimental determination of limit angle of helical anisotropy in amorphous magnetic microwires. J. Magn. Magn. Mater. 321, 803–805 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Bertotti, G.: Hysteresis in Magnetism. Academic Press, San Diego (1998)Google Scholar
  22. 22.
    Chizhik, A., Gonzalez, J.: Magnetic Microwires: A Magneto-Optical Study. Pan Stanford Publishing Pte. Ltd., Singapore (2014)Google Scholar
  23. 23.
    Chizhik, A., Zablotskii, V., Stupakiewicz, A., Gómez-Polo, C., Maziewski, A., Zhukov, A., Gonzalez, J., Blanco, J.M.: Phys. Rev. B. 82, 212401–212404 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Chizhik, A., Gonzalez, J., Zhukov, A., Blanco, J.: Circular magnetic bistability in Co-rich amorphous microwires. J. Phys. D. Appl. Phys. 36, 419–422 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Zvezdin, A.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B. 81, 134421 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Valenzuela, R., Zamorano, R., Alvarez, G., Gutiérrez, M.P., Montiel, H.: Magnetoimpedance, ferromagnetic resonance, and low field microwave absorption in amorphous ferromagnets. J. Non-Cryst. Solids. 353, 768–772 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magnetoimpedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38, 3090–3092 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Tousignant, M., Zabeida, M.O., Rudkowska, G., Yelon, A.: Investigation of surface effect on giant magnetoimpedance in microwires. J. Magn. Magn. Mater. 349, 232–234 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Nakayama, K., Chiba, T., Tsukimoto, S., Yokoyama, Y., Shima, T., Yabukami, S.: Ferromagnetic resonance in soft-magnetic metallic glass nanowire and microwire. J. Appl. Phys. 105, 202403 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departmento Facultad de QuimicaUniversidad del País Vasco UPV/EHUSan SebastianSpain
  2. 2.Laboratory of Magnetism, Faculty of PhysicsUniversity of BialystokBialystokPoland

Personalised recommendations