Skip to main content

Melt Extracted Microwires

  • Chapter
  • First Online:
Book cover High Performance Soft Magnetic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 252))

Abstract

Amorphous microwires as a new category of advanced materials possess many excellent mechanical and magnetic properties, and have received considerable attention from both the research and industry community. Significant efforts have been devoted to the optimization of fabrication process, tailoring of mechanical and magnetic properties, sensor and microwave applications. To now, amorphous wires can be prepared by several methods such as glass coating (Taylor-wire technique), in-water quenching, and melt extraction technology (MET). Compared with others, the solidification rate of wires prepared by melt extraction is the highest, which endows the resultant wires many excellent mechanical and magnetic properties. To our best recollection, there is no dedicated monograph on melt extraction microwires yet. Therefore, in this chapter, we will focus on the melt-extracted amorphous microwires, detailing the fabrication process, wire formation mechanism, mechanical and magnetic properties, thus provide some technical base for its applications in sensor and multifunctional composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strom-Olsen, J.: Fine wires by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 178, 239–243 (1994)

    Article  Google Scholar 

  2. Vazquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D Appl. Phys. 29, 939–949 (1996)

    Article  ADS  Google Scholar 

  3. Waseda, Y., Ueno, S., Hagiwara, M., Aust, K.: Formation and mechanical properties of Fe-and Co-base amorphous alloy wires produced by in-rotating-water spinning method. Prog. Mater. Sci. 34, 149–260 (1990)

    Article  Google Scholar 

  4. Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1996)

    Article  Google Scholar 

  5. Phan, M.-H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)

    Google Scholar 

  6. Qin, F.X., Peng, H.-X.: Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183–259 (2013)

    Article  Google Scholar 

  7. Donald, I.W., Metcalfe, B.L.: Preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process. J. Mater. Sci. 31, 1139–1149 (1996)

    Article  ADS  Google Scholar 

  8. Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Recent research on magnetic properties of glass-coated microwires. J. Magn. Magn. Mater. 294, 182–192 (2005)

    Article  ADS  Google Scholar 

  9. Ochin, P.: Shape memory thin round wires produced by the in rotating water melt-spinning technique. Acta Mater. 54, 1877–1885 (2006)

    Article  Google Scholar 

  10. Yamasaki, J., et al.: Magnetic properties of Co-Si-B amorphous wires prepared by quenching in-rotating water technique. IEEE Trans. J. Magn Jpn. 4, 360–367 (1989)

    Article  Google Scholar 

  11. Chiriac, H., Ovari, T.A., Vazquez, M., Hernando, A.: Magnetic hysteresis in glass-covered and water-quenched amorphous wires. J. Magn. Magn. Mater. 177–181, 205–206 (1998)

    Article  Google Scholar 

  12. Hagiwara, M., Inoue, A., Masumoto, T.: Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method. Metall. Mater. Trans. A 13, 373–382 (1982)

    Article  ADS  Google Scholar 

  13. Maringer, R.E., Mobley, C.E.: Advances in melt extraction. Rapid Quenched Metals III. 446, 49–56 (1978)

    Google Scholar 

  14. Wang, H., Xing, D., Wang, X., Sun, J.: Fabrication and characterization of melt-extracted Co-based amorphous wires. Metall. Mater. Trans. A 42A, 1103–1108 (2010)

    ADS  Google Scholar 

  15. Allahverdi, M., Drew, R.: Melt Extraction of Oxide Ceramic Wires. Montreal, McGill University (1991)

    Google Scholar 

  16. Inoue, A., Amiya, K., Yoshii, I., Kimura, H.M., Masumoto, T.: Production of Al-based amorphous alloy wires with high tensile strength by a melt extraction method. Mater. Trans. JIM 35, 485–488 (1994)

    Article  Google Scholar 

  17. Maringer, R.E., Mobley, C.E.: Casting of metallic filament and wire. J. Vac. Sci. Technol. 11, 1067 (1974)

    Article  ADS  Google Scholar 

  18. Allahverdi, M., Drew, R.A.L., Rudkowska, P., Rudkowski, G., Strom-Olsen, J.O.: Amorphous CaO-Al2O3 wires by melt extraction. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. A207, 12–21 (1996)

    Google Scholar 

  19. Shen, T.D., Schwarz, R.B.: Lowering critical cooling rate for forming bulk metallic glass. Appl. Phys. Lett. 88, 091903 (2006)

    Article  ADS  Google Scholar 

  20. Allahverdi, M., Drew, R., Strom–Olsen, J.: Wetting and melt extraction characteristics of ZrO2–Al2O3 based materials. J. Am. Ceram. Soc. 80, 2910–2916 (1997)

    Google Scholar 

  21. Maringer, R.E., Mobley, C.E.: Melt extraction of metallic filament and staple wire. AIChE Symp. Ser. 74, 16–19 (1978)

    Google Scholar 

  22. Engineering, M.: Fine metallic and ceramic wires by melt extraction. Techniques 1, 158–162 (1994)

    Google Scholar 

  23. Baik, N.I., Choi, Y., Kim, K.Y.: Fabrication of stainless steel and aluminum wires by PDME method. J. Mater. Process. Technol. 168, 62–67 (2005)

    Article  Google Scholar 

  24. Arkhangel'skij, V.M., Mitin, B.S.: Problems in wire producing by pendant drop melt extraction. Stal', 71–76 (2001)

    Google Scholar 

  25. Archangelsky, W., Prischepov, S.V., Vasiliev, V.A.: Adhesion interaction on melt extraction from pendant drop. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 304, 598–603 (2001)

    Article  Google Scholar 

  26. Strom-Olsen, J.: Fine fibres by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. A178, 239–243 (1994)

    Article  Google Scholar 

  27. Allahverdi, M., Drew, R.A.L., Strom-Olsen, J.: Melt extraction and properties of ZrO2 · Al2O3-based wires. Ceram. Eng. Sci. Proc. 16, 1015–1025 (1995)

    Article  Google Scholar 

  28. Rudkowski, P., Strom-Olsen, J.O., Rudkowska, G., Zaluska, A., Ciureanu, P.: Ultra fine, ultra soft metallic fibres. IEEE Trans. Magn. 31, 1224–1228 (1995)

    Article  ADS  Google Scholar 

  29. Allahverdi, M., Drew, R.A.L., StromOlsen, J.O.: Melt-extracted oxide ceramic fibres - The fundamentals. J. Mater. Sci. 31, 1035–1042 (1996)

    Article  ADS  Google Scholar 

  30. Allahverdi, M., Drew, R.A.L., StromOlsen, J.O.: Wetting and melt extraction characteristics of ZrO2-Al2O3 based materials. J. Am. Ceram. Soc. 80, 2910–2916 (1997)

    Article  Google Scholar 

  31. Strom-olsen, J.O., Rudkowska, G., Rudkowski, P., Allahverdi, M., L. Drew, R.A. Fine metallic and ceramic fibres by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 179–180, 158–162 (1994)

    Google Scholar 

  32. Katsuya, A., Inoue, A., Masumoto, T.: Production and properties of amorphous alloy wires in Fe-B base system by a melt extraction method. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 226, 104–107 (1997)

    Article  Google Scholar 

  33. Zhang, T., Inoue, A.: A new method for producing amorphous alloy wires. Mater. Trans. JIM 41, 1463–1466 (2000)

    Article  Google Scholar 

  34. Inoue, A., Amiya, K., Katsuya, A., Masumoto, T.: Mechanical properties and thermal stability of Ti- and Al-based amorphous wires prepared by a melt extraction method. Mater. Trans. JIM 36, 858–865 (1995)

    Article  Google Scholar 

  35. Taha, M.A., El-Mahallawy, N.A., Abdel-Gaffar, M.F.: Geometry of melt-spun ribbons. Mater. Sci. Eng. A A134, 1162–1165 (1991)

    Article  Google Scholar 

  36. Tanner, B.R.I.: Note on the Rayleigh Problem for a Visco-Elastic Fluid. 13, 573–580 (1962)

    Google Scholar 

  37. Saasen, B.A., Tyvand, P.A.: Rayleigh-Taylor instability and Rayleigh-type waves on a Maxwell-fluid. J. Appl. Math. 41, 284–293 (1990)

    Google Scholar 

  38. Olson, B.J., Cook, A.W.: Rayleigh-Taylor shock waves. Phys. Fluids 19, 128108 (2007)

    Article  ADS  MATH  Google Scholar 

  39. Akihisa, I.: Preparation of amorphous Fe-Si-B and Co-Si-B alloy wires by a melt extraction method and their mechanical and magnetic properties. Mater. Trans. 36, 802–809 (1995)

    Article  Google Scholar 

  40. Allahverdi, M., Drew, R.A.L., Rudkowska, P., Rudkowski, G., StromOlsen, J.O.: Amorphous CaO · Al2O3 wires by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 207, 12–21 (1996)

    Article  Google Scholar 

  41. Kavesh, S.: Melt spinning of metal wires. AIChE Symp. Ser. 74, 1–15 (1978)

    Google Scholar 

  42. Schlichting, H., Gersten, K.: Boundary-Layer Theory, Berlin:  Springer Verlag, (2000)

    Google Scholar 

  43. Schlichting, H.: Theory of Boundary Layer. Nauka, Moscow (1969)

    Google Scholar 

  44. Wang, H., Qin, F.X., Xing, D.W., et al.: Fabrication and characterization of nano/amorphous dualphase FINEMET microwires. Mater. Sci. Eng. B 178(20), 1483–1490 (2013)

    Google Scholar 

  45. Khandogina, E.N., Petelin, A.L.: Magnetic, mechanical properties and structure of amorphous glass coated microwires. J. Magn. Magn. Mater. 249, 55–59 (2002)

    Google Scholar 

  46. Qin, F.X., et al.: Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater. 61, 1284–1293 (2013)

    Article  Google Scholar 

  47. Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071–1077 (2002)

    Article  Google Scholar 

  48. Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)

    Article  Google Scholar 

  49. Wu, F.F., Zhang, Z.F., Mao, S.X.: Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 57, 257–266 (2009)

    Article  Google Scholar 

  50. Wang, H., et al.: Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 60, 5425–5436 (2012)

    Article  Google Scholar 

  51. Yi, J., et al.: Micro-and nanoscale metallic glassy wires. Adv. Eng. Mater. 12, 1117–1122

    Google Scholar 

  52. Nagase, T., Kinoshita, K., Nakano, T., Umakoshi, Y.: Fabrication of Ti-Zr binary metallic wire by Arc-Melt-Type melt-extraction method. Mater. Trans. 50, 872–878 (2009)

    Article  Google Scholar 

  53. Takayama, S.: Drawing of Pd77. 5Cu6Si16. 5 metallic glass wires. Mater. Sci. Eng. 38, 41–48 (1979)

    Article  Google Scholar 

  54. Masumoto, T., Ohnaka, I., Inoue, A., Hagiwara, M.: Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scripta Metall 15, 293–296 (1981)

    Article  Google Scholar 

  55. Zberg, B., Arata, E.R., Uggowitzer, P.J., Lofler, J.F.: Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater. 57, 3223–3231 (2009)

    Article  Google Scholar 

  56. Nagase, T., Ueda, M., Umakoshi, Y.: Preparation of Ni-Nb-based metallic glass wires by arc-melt-type melt-extraction method. J. Alloys Compd. 485, 304–312 (2009)

    Article  Google Scholar 

  57. Metals, O., Centre, D.: Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties. Development 20, 97–104 (1985)

    Google Scholar 

  58. Wu, Y., et al.: Nonlinear tensile deformation behavior of small-sized metallic glasses. Scr. Mater. 61, 564–567 (2009)

    Article  Google Scholar 

  59. V´azquez, M.: Advanced magnetic microwires. In: Handbook of Magnetism and Advanced Magnetic Materials, vols 1–34. John Wiley & Sons, Ltd (2007)

    Google Scholar 

  60. Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D Appl. Phys. 33, 1161 (2000)

    Article  ADS  Google Scholar 

  61. Zhang, S.L., Sun, J.F., Xing, D.W., Qin, F.X., Peng, H.X.: Large GMI effect in Co-rich amorphous wire by tensile stress. J. Magn. Magn. Mater. 323, 3018–3021 (2011)

    Article  ADS  Google Scholar 

  62. Antonov, A.S., et al.: Residual quenching stresses in amorphous ferromagnetic wires produced by an in-rotating-water spinning process. J. Phys. D Appl. Phys. 32, 1788–1794 (1999)

    Article  ADS  Google Scholar 

  63. Wu, Y., Wu, H.H., Hui, X.D., Chen, G.L., Lu, Z.P.: Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses. Acta Mater. 58, 2564–2576 (2010)

    Article  Google Scholar 

  64. Provenzano, V., Shapiro, A.J., Shull, R.D.: ErratumReduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 435, 528–528 (2005)

    Article  ADS  Google Scholar 

  65. Jeong, S.: AMR (Active Magnetic Regenerative) refrigeration for low temperature. Cryogenics 62, 193–201 (2014)

    Article  ADS  Google Scholar 

  66. Dong, J.D., Yan, A.R., Liu, J.: Microstructure and magnetocaloric properties of melt-extracted La–Fe–Si microwires. J. Magn. Magn. Mater. 357, 73–76 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (NSFC 51371067, 51671171 and 51501162) and Zhejiang Provincial Natural Science Foundation of China (LY16E010001). HW also acknowledges useful discussions with Hongxian Shen, Jingshun Liu, Shuling Zhang, and Lunyong Zhang from the Harbin Institute of Technology, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, H., Qin, F.X., Peng, H.X., Sun, J.F. (2017). Melt Extracted Microwires. In: Zhukov, A. (eds) High Performance Soft Magnetic Materials. Springer Series in Materials Science, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-49707-5_3

Download citation

Publish with us

Policies and ethics