Advertisement

Tailoring of Soft Magnetic Properties and High Frequency Giant Magnetoimpedance in Amorphous Ribbons

  • L. González-Legarreta
  • V. M. Prida
  • A. Talaat
  • M. Ipatov
  • V. Zhukova
  • Arcady Zhukov
  • LI. Escoda
  • J. J. Suñol
  • J. González
  • B. HernandoEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)

Abstract

Soft ferromagnetic amorphous ribbons attract a considerable attention for their applications as high-performance sensing elements in different giant magnetoimpedance (GMI)-based magnetic sensors to measure magnetic field, current, and stress with high sensitivity and better signal to noise ratio than magnetic sensors based in other effects. GMI is mainly determined by the ribbon transverse permeability and this parameter can be suitable enhanced by inducing a magnetic anisotropy by different thermal treatments in amorphous ribbons. In this chapter we report studies on the analysis of GMI response of near-zero magnetostriction Co-based amorphous ribbons exhibiting a macroscopic uniaxial magnetic anisotropy induced by two kinds of thermal treatment, namely: by current annealing (440–680 mA during 5 min) and by stress-annealing treatment (300 MPa applied tensile stress at different temperature, i.e., 340, 360, and 400 °C, during 1 h) in the frequency range from 100 MHz up to 3500 MHz. Comparison among GMI effect of stress-annealed and current-annealed ribbons is discussed.

Keywords

Amorphous ribbons Soft magnetic properties Giant magnetoimpedance effect Stress annealing Current annealing 

Notes

Acknowledgements

This work was financially supported by the Spanish MINECO Ref. MAT2013-47231-C2-1-P, Ref. MAT2013-47231-C2-2-P, and Ref. MAT2013-48054-C2-2-R, Asturias Government Ref. FC-15-GRUPIN14-085, Basque Government under Saiotek 13 PROMAGMI (SPE13UN014), and DURADMAG (S-PE13UN007). Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged.

References

  1. 1.
    Jiles, D.C.: Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907 (2003)CrossRefGoogle Scholar
  2. 2.
    Hasegawa, R.: Advances in amorphous and nanostructured materials. J. Optoelectron. Adv. Mater. 6, 503 (2004)Google Scholar
  3. 3.
    Zhukov, A., Ipatov, M., Churyukanova, M., Kaloshkin, S., Zhukova, V.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586, S279 (2014)CrossRefGoogle Scholar
  4. 4.
    Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Beach, R., Berkowitz, A.: Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Mohri, K., Uchiyama, T., Shen, L.P., Cai, C.M., Panina, L.V.: Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls. J. Magn. Magn. Mater. 249, 351 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Marín, P., López, M., Vlad, A., Hernando, A., Ruiz-González, M.L., González-Calbet, J.M.: Magnetic field driving custom assembly in (FeCo) nanocrystals. Appl. Phys. Lett. 89, 033508 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., Keylin, V., Huth, J.: Temperature stability of field induced anisotropy in soft ferromagnetic Fe, Co-based amorphous and nanocomposite ribbons. J. Appl. Phys. 105, 07A322 (2009)CrossRefGoogle Scholar
  10. 10.
    Chaturvedi, A., Laurita, N., Leary, A., Phan, M.-H., McHenry, M.E., Srikanth, H.: Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1−xFex)89Zr7B4 (x = 0, 0.025, 0.05, 0.1) ribbons. J. Appl. Phys. 109, 07B508 (2011)CrossRefGoogle Scholar
  11. 11.
    Laurita, N., Chaturvedi, A., Bauer, C., Jayathilaka, P., Leary, A., Miller, C., Phan, M.-H., McHenry, M.E., Srikanth, H.: J. Appl. Phys. 109, 07C706 (2011)CrossRefGoogle Scholar
  12. 12.
    Manna, S.K., Srinivas, V.: Magnetic and magnetoimpedance studies on controlled Joule annealed amorphous Co73Fe4.5Ni0.5Mn0.5Nb0.5Si4.2B16.8 alloy. J. Appl. Phys. 115, 17A324 (2014)CrossRefGoogle Scholar
  13. 13.
    Knobel, M., Vazquez, M., Kraus, L.: Giant magnetoimpedance. In: Buschow, K. (ed.) Handbook of Magnetic Materials, pp. 497–563. Elsevier, North-Holland (2003)Google Scholar
  14. 14.
    Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323 (2008)CrossRefGoogle Scholar
  15. 15.
    Kraus, L.: Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. J. Magn. Magn. Mater. 195, 764 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Makhnovskiy, D.P., Panina, L.V., Mapps, D.: Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential. Phys. Rev. B. 63, 144424-1–144424-17 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Kraus, L.: Off-diagonal magnetoimpedance in stress-annealed amorphous ribbons. J. Magn. Magn. Mater. 320, e746–e749 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Kraus, L., Vázquez, M., Infante, G., Badini-Confalonieri, G., Torrejón, J.: Nonlinear magnetoimpedance and parametric excitation of standing spin waves in a glass-covered microwave. Appl. Phys. Lett. 94, 062505 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Panina, L.V., Mohri, K., Uchiyama, T., Noda, M., Bushida, K.: Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Ciureanu, P., Britel, M., Ménard, D., Akyel, C., Yelon, A., Rouabhi, M., Cochrane, R.W.: Anisotropic behavior of permalloy wires using the giant magnetoimpedance effect. J. Magn. Magn. Mater. 196–197, 391 (1999)CrossRefGoogle Scholar
  21. 21.
    Crisan, O., Le Breton, J.M., Filoti, G.: Nanocrystallization of soft magnetic Finemet-type amorphous ribbons. Sens. Actuators A. 106, 246 (2003)CrossRefGoogle Scholar
  22. 22.
    Zhang, K., Zhou, D.W., Han, B., Lv, Z., Xun, X.C., Du, X.B., Liu, Y.Q., Yao, B., Zhang, T., Li, B.H., Wang, D.: Annealing temperature dependence of magnetic properties and magneto-impedance effect in CoZrB alloys. J. Alloys Compd. 464(28), (2008)Google Scholar
  23. 23.
    Allia, P., Tiberto, P., Baricco, M., Vinai, F.: dc Joule annealing of amorphous metallic ribbons: experimental aspects and model. Rev. Sci. Instrum. 64, 1053 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Sahoo, T., Majundar, B., Srivinas, V., Srinivas, M., Nath, T.K., Agarwal, G.: Improved magnetoimpedance and mechanical properties on nanocrystallization of amorpous Fe68.5Si18.5Cu1Nb3B9 ribbons. J. Magn. Magn. Mater. 343, 13 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Hoque, S.M., Haque, A., Rahman, M.O., Nghi, N.H., Hakim, M.A., Akther, S.: Ultra-soft magnetic properties and giant magneto-impedance of Co68Fe4.5Si12.5B15. J. Non-Cryst. Solids. 357, 2109 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Kotagiri, G., Ramarao, S.D., Markandeyulu, G.: Magnetoimpedance studies on laser and microwave annealed Fe66Ni7Si7B20 ribbons. J. Magn. Magn. Mater. 382, 43 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    González, L., Bonastre, J., Sánchez, T., Santos, J.D., Sánchez, M.L., Chiznik, A., Domínguez, L., Ipatov, M., Zhukova, V., Zhukov, A., González, J., Suñol, J.J., Hernando, B.: Magnetoimpedance response in Co-based amorphous ribbons obtained under the action of a magnetic field. IEEE Trans. Magn. 48, 4375 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, C.G., Jang, K.J., Kim, H.C.: Asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon. J. Appl. Phys. 15, 5447–5449 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Gupta, P., Gupta, A., Franco, V., Conde, A.: Joule heating as a technique for obtaining uncoupled soft and hard magnetic phases in a Finemet alloy. J. Appl. Phys. 101, 133909 (2007)Google Scholar
  30. 30.
    Shari, F., Beitollahi, A., Shabestari, S.G., Ghanaatshoar, M., Tehranchi, M.M., Mohseni, S.M., Roozmeh, S.E., Wanderka, N., Florillo, F.: Structural characterization and magnetoimpedance effect in amorphous and nanocrystalline Al Ge-substituted FeSiBNbCu ribbons. J. Magn. Magn. Mater. 312, 35–42 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Bonastre, J., Suñol, J.J., Bruna, P., Sato, K., Santos, J.D., Hernando, B.: Influence of a magnetic field applied during the quenching process on the spin density and nanoscale of an amorphous Fe-B ribbon. Mater. Lett. 87, 131–134 (2012)CrossRefGoogle Scholar
  32. 32.
    Talaat, A., Ipatov, M., Zhukova, V., Zhukov, A.P., González, J., González-Legarreta, L., Prida, V.M., Hernando, B.: High frequency magnetoimpedance response of stress annealed Co66.3Fe3.7Si12.0B18.0 amorphous alloy ribbons. J. Appl. Phys. 114, 023904 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Narita, K., Yamasaki, J., Fukunaga, H.: Measurement of saturation magnetostriction of a thin amorphous ribbon by means of small-angle-magnetization-rotation. IEEE Trans. Magn. 16, 435 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    Ipatov, M., Zhukova, V., Zhukov, A., González, J.: Expanding the longitudinal magnetoimpedance sensor range by direct bias current. J. Appl. Phys. 113, 203902 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Nielsen, O.V.: Effects of longitudinal and torsional stress annealing on the magnetic anisotropy in amorphous ribbon materials. IEEE Trans. Magn. 21, 2008 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    Blanco, J.M., Barbón, P.G., Pierna, A.R., González, J.: Compositional dependence of the stress plus field induced anisotropy in Co-Ni-Si-B and Co-Fe-Ni-Si-B amorphous alloy ribbons. J. Non-Cryst. Solids. 136, 91 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    Vázquez, M., González, J., Hernando, A.: Induced magnetic anisotropy and change of the magnetostriction by current annealing in Co-based amorphous alloys. J. Magn. Magn. Mater. 53, 323 (1986)CrossRefGoogle Scholar
  38. 38.
    Barandiarán, J.M., García-Arribas, A., de Cos, D.: Transition from quasistatic to ferromagnetic resonance regime in giant magnetoimpedance. J. Appl. Phys. 99, 103904 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Antonov, A.S., Iakubov, I.A., Lagarikov, A.N.: Longitudinal-transverse linear transformation of the HF-current in soft magnetic materials with induced anisotropy. IEEE Trans. Magn. 33, 3367 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    Buznikov, N.A., Kim, C.G., Kim, C.O., Yoon, S.S.: Asymmetric off-diagonal magnetoimpedance in field-annealed amorphous ribbons: analysis of bias current effect. J. Magn. Magn. Mater. 309, 216 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Malátek, M., Kraus, L.: Off-diagonal GMI sensor with stress-annealed amorphous ribbon. Sens. Actuators A. 164, 41–45 (2010)CrossRefGoogle Scholar
  42. 42.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Zvezdin, A.: Low field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B. 81, 134421 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Magnetoimpedance sensitive to dc bias current in amorphous microwires. Appl. Phys. Lett. 97, 252507 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Ipatov, M., Zhukova, V., Gonzalez, J., Zhukov, A.: Symmetry breaking effect of dc bias current on magnetoimpedance in microwire with helical anisotropy: application to magnetic sensors. J. Appl. Phys. 110, 086105 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Manna, S.K., Srinivas, V.: Magnetic and magnetoimpedance studies on controlled Joule annealed amorphous Co73Fe4.5Ni0.5Mn0.5Nb0.5Si4.2B16.8 alloy. J. Appl. Phys. 115, 17A324 (2011)CrossRefGoogle Scholar
  46. 46.
    Ipatov, M., González-Legarreta, L., Garcia, J., Chizhik, A., Domínguez, L., Zhukova, V., Zhukov, A., Hernando, B., González, J.: Induced giant magnetoimpedance effect by current annealing in ultra thin Co-based amorphous ribbons. IEEE Trans. Magn. 49, 1009 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • L. González-Legarreta
    • 1
  • V. M. Prida
    • 1
  • A. Talaat
    • 2
  • M. Ipatov
    • 2
  • V. Zhukova
    • 2
  • Arcady Zhukov
    • 3
    • 4
    • 5
  • LI. Escoda
    • 6
  • J. J. Suñol
    • 6
  • J. González
    • 2
  • B. Hernando
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.Department of Materials PhysicsUniversity of the Basque CountrySan SebastiánSpain
  3. 3.Department of Materials PhysicsBasque Country University, UPV/EHUSan SebastianSpain
  4. 4.Departamento de Física Aplicada, EUPDSBasque Country University, UPV/EHUSan SebastianSpain
  5. 5.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  6. 6.Girona UniversityGironaSpain

Personalised recommendations