Skip to main content

Amorphous and Nanocrystalline Glass-Coated Wires: Optimization of Soft Magnetic Properties

  • Chapter
  • First Online:
High Performance Soft Magnetic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 252))

Abstract

In this chapter, we are reporting on engineering of soft magnetic properties, Giant magnetoimpedance (GMI) effect and domain wall dynamics of amorphous and nanocrsytalline glass-coated microwires. We overview the effect of magnetoelastic anisotropy that can be controlled through the strength of the internal stresses or the metallic alloy composition on the GMI effect and magnetic softness of glass-coated microwires. High GMI effect has been observed in as-prepared and annealed amorphous Co-rich microwires with vanishing magnetostriction coefficient.

Selection of the appropriate chemical composition and geometry allows achievement of high GMI effect.

Magnetic properties of amorphous microwires are strongly affected by the annealing. In Co-rich microwires after annealing rectangular hysteresis loops and coexistence of GMI effect and fast domain wall propagation can be observed. Observed changes are discussed considering effect of annealing on the magnetostriction coefficient. Similarly in Fe-rich microwires annealing affects the DW dynamics.

Investigations of magnetic properties of Finemet-type Fe-Cu-Nb-Si-B microwires reveal that annealing considerably affects the hysteresis loops and GMI effect of this family of microwires. Magnetoelastic anisotropy affects soft magnetic properties of as-prepared FeCuNbSiB microwires. We observed magnetic softening and a considerable increasing of the GMI effect in Finemet-type FeCuNbSiB with nanocrystalline structure. After an adequate annealing of Finemet-type microwires we observed a GMI ratio of about 100 %. In Hitperm-like Fe38.5Co38.5B18Mo4Cu1 microwires rectangular hysteresis loops and fast domain wall dynamics have been observed. Developed magnetically soft thin wires with optimized GMI effect are suitable for magnetic sensors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referencess

  1. Zhukova, V., Ipatov, M., Zhukov, A.: Thin magnetically soft wires for magnetic microsensors. Sensors. 9, 9216–9240 (2009)

    Article  Google Scholar 

  2. Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)

    Article  Google Scholar 

  3. Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers, New York (2009)ISBN: 978-1-60741-770-5

    Google Scholar 

  4. Chiriac, H., Corodeanu, S., Lostun, M., Ababei, G., Óvári, T.-A.: Magnetic behavior of rapidly quenched submicron amorphous wires. J. Appl. Phys. 107, 09A301 (2010)

    Article  Google Scholar 

  5. Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333 (1997)

    Article  Google Scholar 

  6. Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002)

    Article  ADS  Google Scholar 

  7. Harrison, E.P., Turney, G.L., Rowe, H.: Electrical properties of wires of high permeability. Nature. 135, 961 (1935)

    Article  ADS  Google Scholar 

  8. Zhukov, A., Ipatov, M., Churyukanova, M., Kaloshkin, S., Zhukova, V.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586(Suppl. 1), S279–S286 (2014)

    Article  Google Scholar 

  9. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)

    Article  ADS  Google Scholar 

  10. Beach, R.S., Berkowitz, A.E.: Giant magnetic-field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64(26), 3652 (1994)

    Article  ADS  Google Scholar 

  11. Varga, R., Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Supersonic domain wall in magnetic microwires. Phys. Rev. B. 76, 132406 (2007). doi:10.1103/Phys Rev B.76.132406

    Google Scholar 

  12. Ekstrom, P.A., Zhukov, A.: Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwire. J. Phys. D: Appl. Phys. 43, 205001 (2010). doi:10.1088/0022-3727/43/20/205001

    Article  ADS  Google Scholar 

  13. Gudoshnikov, S.A., Grebenshchikov, Y.B., Ljubimov, B.Y., Palvanov, P.S., Usov, N.A., Ipatov, M., Zhukov, A., Gonzalez, J.: Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Status Solidi A. 206(4), 613 (2009). doi:10.1002/pssa.200881254

    Article  ADS  Google Scholar 

  14. Hayashi, M., Thomas, L., Rettner, C., Moriya, R., Jiang, X., Parkin, S.: Dependence of Current and Field Driven Depinning of Domain Walls on Their Structure and Chirality in Permalloy Nanowires. Phys. Rev. Lett. 97, 207205 (2006). doi:10.1103/PhysRevLett. 97.207205

    Google Scholar 

  15. Faulkner, C.C., Allwood, D.A., Cowburn, R.P.: Tuning of biased domain wall depinning fields at Permalloy nanoconstrictions. J. Appl. Phys. 103, 073914 (2008). doi:10.1063/1.2905318

    Article  ADS  Google Scholar 

  16. Larin, V.S., Torcunov, A.V., Zhukov, A., González, J., Vazquez, M., Panina, L.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1-2), 39–45 (2002)

    Article  ADS  Google Scholar 

  17. Taylor, G.F.: Phys. Rev. 24, 6555–6560 (1924)

    Google Scholar 

  18. Ulitovski, A.V., Maianski, I.M., Avramenko, A.I.: Author’s Certification Patent No. 128,427, 3 Sept 1950

    Google Scholar 

  19. Wiesner, H., Schneider, J.: Structure transformation in Fe-based amorphous alloy. Phys. Status Solidi A. 32(2), 655–659 (1975)

    Google Scholar 

  20. Wiesner, H., Schneider, J., Gemperle, R.: Annealing effects on the magnetic properties of rapidly quenched transition metal alloys. Phys. Status Solidi A. 36(1), K59 (1976)

    Article  ADS  Google Scholar 

  21. Gemperle, R., Kraus, L., Schneider, J.: Magnetization reversal of amorphous Fe80P10B10 microwires. Czech. J. Phys. B. 28, 1138 (1978)

    Article  ADS  Google Scholar 

  22. Kraus, L., Schneider, J., Wiesner, H.: Ferromagnetic resonance in amorphous alloys prepared by rapid quenching from the melt. Czech. J. Phys. B. 26, 601 (1976)

    Article  ADS  Google Scholar 

  23. Kraus, L., Schneider, J.: Magnetostriction of Amorphous (Fe1-xNix)80P10B10 Alloys. Phys. Status Solidi A. 39, K161 (1977)

    Article  ADS  Google Scholar 

  24. Zhukov, A., Zhukova, V.: Magnetic Sensors Based on Thin Magnetically Soft Wires with Tuneable Magnetic Properties and its Applications. International Frequency Sensor Association (IFSA) Publishing, Ronda de Ramon Otero Pedrayo (2014). ISBN-10: 84-617-1866-6

    Google Scholar 

  25. Konno, Y., Mohri, K.: Magnetostriction measurements for amorphous wires. IEEE Trans. Magn. 25, 3623–3625 (1989)

    Article  ADS  Google Scholar 

  26. Zhukov, A., Churyukanova, M., Kaloshkin, S., Sudarchikova, V., Gudoshnikov, S., Ipatov, M., Talaat, A., Blanco, J.M., Zhukova, V.: Magnetostriction of Co-Fe-based amorphous soft magnetic microwires. J. Electron. Mater. 45, 226–234 (2015). doi:10.1007/s11664-015-4011-2

    Article  ADS  Google Scholar 

  27. Zhukov, A., Zhukova, V., Blanco, J.M., Cobeño, A.F., Vazquez, M., Gonzalez, J.: Magnetostriction in glass-coated magnetic microwires. J. Magn. Magn. Mater. 258-259, 151–157 (2003)

    Article  ADS  Google Scholar 

  28. Yoshizawa, Y., Yamauchi, K.: Fe-based soft magnetic alloy composed of ultrafinegrain structure. Mater. Trans. JIM. 31, 307–314 (1990)

    Article  Google Scholar 

  29. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  ADS  Google Scholar 

  30. McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)

    Article  Google Scholar 

  31. Herzer, G.: Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 294, 99–106 (2005)

    Article  ADS  Google Scholar 

  32. Zhukova, V., Cobeño, A.F., Zhukov, A., Blanco, J.M., Larin V. and Gonzalez J.: Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0≤x≤1.6) microwires. Nanostruct. Mater. 11(8), 1319–1327 (1999)

    Google Scholar 

  33. Dudek, C., Adenot-Engelvin, A.L., Bertin, F., Acher, O.: J. Non-Cryst. Solids. 353, 925 (2007)

    Article  ADS  Google Scholar 

  34. Zhukov, A.P., Talaat, A., Ipatov, M., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., Zhukova, V.: Effect of nanocrystallization on magnetic properties and GMI effect of microwires. IEEE Trans. Magn. 50(6), 2501905 (2014)

    Google Scholar 

  35. Talaat, A., Zhukova, V., Ipatov, M., del Val, J.J., Gonzalez-Legarreta, L., Hernando, B., Blanco, J.M., Zhukov, A.: Effect of nanocrystallization on giant magnetoimpedance effect of Fe based microwires. Intermetallics. 51, 59–63 (2014)

    Article  Google Scholar 

  36. Talaat, A., Zhukova, V., Ipatov, M., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., del Val, J.J., Gonzalez, J., Zhukov, A.: Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. J. Appl. Phys. 115, 17A313 (2014)

    Article  Google Scholar 

  37. Chiriac, H., Ovari, T.A., Marinescu, C.S.: Giant magneto-impedance effect in nanocrystalline glass-covered wires. J. Appl. Phys. 83, 6584 (1998)

    Article  ADS  Google Scholar 

  38. Vázquez, M., Zhukov, A.: Magnetic properties of glass coated amorphous and nanocrystalline microwires. J. Magn. Magn. Mater. 160, 223–228 (1996)

    Article  ADS  Google Scholar 

  39. Usov, N.A., Antonov, A.S., Lagar`kov, A.N.: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159 (1998)

    Article  ADS  Google Scholar 

  40. Pirota, K.R., Kraus, L., Chiriac, H., Knobel, M.: Magnetic properties and GMI in a CoFeSiB glass-covered microwire. J. Magn. Magn. Mater. 21, L243–L247 (2000)

    Article  ADS  Google Scholar 

  41. Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magneto-impedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38(5), 3090–3092 (2002)

    Article  ADS  Google Scholar 

  42. Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11, 2499–2505 (1996)

    Article  ADS  Google Scholar 

  43. Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33, 1161–1168 (2000)

    Article  ADS  Google Scholar 

  44. Chiriac, H., Ovari, T.-A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254-255, 469–471 (2003)

    Article  ADS  Google Scholar 

  45. Zhukov, A., Ipatov, M., Zhukova, V.: Amorphous microwires with enhanced magnetic softness and GMI characteristics. EPJ Web Conf. 29, 00052 (2012)

    Article  Google Scholar 

  46. Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012). doi:10.1186/1556-276X-7-223

    Article  ADS  Google Scholar 

  47. Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)

    Article  ADS  Google Scholar 

  48. Aragoneses, P., Blanco, J.M., Dominguez, L., et al.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D: Appl. Phys. 31, 3040–3045 (1998)

    Article  ADS  Google Scholar 

  49. Aragoneses, P., Blanco, J.M., Cobeño, A.F., Dominguez, L., Gonzalez, J., Zhukov, A., Larin, V.: Stress dependence of the switching field in Co-rich amorphous microwires. J. Magn. Magn. Mater. 196-197, 248–250 (1999)

    Article  ADS  Google Scholar 

  50. Zhukov, A., Ipatov, M., Blanco, J.M., Chizhik, A., Talaat, A., Zhukova, V.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol., A. 126, 7–11 (2014)

    Article  Google Scholar 

  51. Garcia-Prieto, M.J., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sens. Actuators, A. 81(1-3), 227–231 (2000)

    Article  Google Scholar 

  52. Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)

    Article  ADS  Google Scholar 

  53. Zhukov, A., Vázquez, M., Velázquez, J., et al.: Frequency dependence of coercivity in rapidly quenched amorphous materials. J. Mater. Sci. Eng. A. 226-228, 753–756 (1997)

    Article  Google Scholar 

  54. Zhukov, A., Talaat, A., Ipatov, M., Blanco, J.M., Zhukova, V.: Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. J. Alloys Compd. 615, 610–615 (2014)

    Article  Google Scholar 

  55. Zhukov, A., Talaat, A., Blanco, J.M., Ipatov, M., Zhukova, V.: Tuning of magnetic properties and GMI effect of Co-based amorphous microwires by annealing. J. Electron. Mater. 43(12), 4532–4539 (2014). doi:10.1007/s11664-014-3348-2

    Article  ADS  Google Scholar 

  56. Zhukova, V., Ipatov, M., García, C., Gonzalez, J., Blanco, J.M., Zhukov, A.: Development of ultra-thin glass-coated amorphous microwires for high frequency magnetic sensors applications. Open Mater. Sci. J. 1, 1–12 (2007)

    Article  Google Scholar 

  57. Churyukanova, M., Semenkova, V., Kaloshkin, S., Shuvaeva, E., Gudoshnikov, S., Zhukova, V., Shchetinin, I., Zhukov, A.: Magnetostriction investigation of soft magnetic microwires. Phys. Status Solidi A. 213, 363–367 (2016). doi:10.1002/pssa.201532552

    Article  Google Scholar 

  58. Zhukov, A.: Design of magnetic properties of Fe-rich, glass-coated magnetic microwires for technical applications. Adv. Funct. Mater. 16(5), 675–680 (2006)

    Article  Google Scholar 

  59. Zhukova, V., Talaat, A., Ipatov, M., Del val, J.J., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., Varga, R., Klein, P., Churyukanova, M., Zhukov, A.: Optimization of soft magnetic properties in nanocrystalline Fe-rich glass-coated microwires. JOM. 67, 2108 (2015). doi:10.1007/s11837-015-1546-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zhukova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhukova, V., Ipatov, M., Talaat, A., Blanco, J.M., Zhukov, A. (2017). Amorphous and Nanocrystalline Glass-Coated Wires: Optimization of Soft Magnetic Properties. In: Zhukov, A. (eds) High Performance Soft Magnetic Materials. Springer Series in Materials Science, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-49707-5_1

Download citation

Publish with us

Policies and ethics