Skip to main content

Recombinant Structural Proteins and Their Use in Future Materials

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

Recombinant proteins are polymers that offer the materials engineer absolute control over chain length and composition: key attributes required for design of advanced polymeric materials. Through this control, these polymers can be encoded to contain information that enables them to respond as the environment changes. However, despite their promise, protein-based materials are under-represented in materials science. In this chapter we investigate why this is and describe recent efforts to address this. We discuss constraints limiting rational design of structural proteins for advanced materials; advantages and disadvantages of different recombinant expression platforms; and, methods to fabricate proteins into solid-state materials. Finally, we describe the silk proteins used in our laboratory as templates for information-containing polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali U, Zhou Y, Wang X, Lin T (2012) Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text I 103:80–88

    Article  CAS  Google Scholar 

  • An B, Abbonante V, Yigit S, Balduini A, Kaplan DL, Brodsky B (2014) Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system. J Biol Chem 289:4941–4951

    Article  CAS  PubMed  Google Scholar 

  • Andersen SO (1964) The crosslinks in resilin identified as dityrosine and trityrosine. Biochim Biophys Acta 93:213–215

    Article  CAS  PubMed  Google Scholar 

  • Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62

    Article  CAS  PubMed  Google Scholar 

  • Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238

    Article  CAS  PubMed  Google Scholar 

  • Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk–silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28:4373–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidwell GL, Fokt I, Priebe W, Raucher D (2007) Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 73:620–631

    Article  CAS  PubMed  Google Scholar 

  • Bini E, Foo CWP, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    Article  CAS  PubMed  Google Scholar 

  • Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12:2957–2965

    Article  CAS  PubMed  Google Scholar 

  • Bradbury JH (1973) The structure and chemistry of keratin fibers. Adv Prot Chem 27:111–211

    Article  CAS  Google Scholar 

  • Calado CRC, Ferreira BS, da Fonseca MMR, Cabral JMS, Fonseca LP (2004) Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. J Biotechnol 109:147–158

    Article  CAS  PubMed  Google Scholar 

  • Campbell PM, Trueman HE, Zhang Q, Kojima K, Kameda T, Sutherland TD (2014) Cross-linking in the silks of bees, ants and hornets. Insect Biochem Mol Biol 48:40–50

    Article  CAS  PubMed  Google Scholar 

  • Canabady-Rochelle LLS, Belton DJ, Deschaume O, Currie HA, Kaplan DL, Perry CC (2012) Bioinspired silicification of silica-binding peptide-silk protein chimeras: comparison of chemically and genetically produced proteins. Biomacromolecules 13:683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL (2009) Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5:3412–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R (2012) Bacterial expression systems for recombinant protein production: E coli and beyond. Biotechnol Adv 30:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shao Z, Knight DP, Vollrath F (2007) Conformation transition kinetics of Bombyx mori silk protein. Proteins 68:223–231

    Article  CAS  PubMed  Google Scholar 

  • Church JS, Woodhead AL, Walker AA, Sutherland TD (2014) A comparison of convergently evolved insect silks that share β-sheet molecular structure. Biopolymers 101:630–639

    Article  CAS  PubMed  Google Scholar 

  • Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High level expression of tetanus toxin fragment C in Pichia pastris strains containing multiple tandem repeat integrations of the gene. Biotechnology 9:455–460

    Article  CAS  PubMed  Google Scholar 

  • Colino AF, Arias FJ, Alonso M, Rodriguez-Cabello JC (2014) Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process. Biomacromolecules 15:3781–3793

    Article  CAS  Google Scholar 

  • Cosgriff-Hernandez E, Hahn MS, Russell B, Wilems T, Munoz-Pinto D, Browning MB, Rivera J, Höök M (2010) Bioactive hydrogels based on designer collagens. Acta Biomater 6:3969–3977

    Article  CAS  PubMed  Google Scholar 

  • Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk–silver binding proteins. Adv Funct Mater 21:2889–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabirian F, Ravandi SAH, Hinestroza JP, Abuzade RA (2012) Conformal coating of yarns and wires with electrospun nanofibers. Polym Eng Sci 52:1724–1732

    Article  CAS  Google Scholar 

  • Davis NR, Anwar RA (1970) Mechanism of formation of desmosine and isodesmosine cross-links of elastin. J Am Chem Soc 92:3778–3782

    Article  CAS  PubMed  Google Scholar 

  • DiMarco RL, Heilshorn SC (2012) Multifunctional materials through modular protein engineering. Adv Mater 24:3923–3940

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhang D (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Factories 13:63–74

    Article  CAS  Google Scholar 

  • Dosunmu OO, Chase GG, Kataphinan W, Reneker DH (2006) Electrospinning of polymer nanofibers from multiple jets on a porous tubular surface. Nanotechnology 17:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Elliot GF, Huxley AF, Weis-Fogh T (1965) On the structure of resilin. J Mol Biol 13:791–795

    Article  Google Scholar 

  • Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DCC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Wang H, Zhang K, He C, Cai Z, Mo X (2012) Regenerated silk fibroin nanofibrous matrices treated with 75 % ethanol vapor for tissue-engineering applications. J Biomater Sci Polym Ed 23:497–508

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Factories 12:113–116

    Article  CAS  Google Scholar 

  • Fleming WW, Sullivan CE, Torchia DA (1980) Characterization of molecular motions in13C-labeled aortic elastin by13C-1H magnetic double resonance. Biopolymers 19:597–617

    Article  CAS  PubMed  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca/New York

    Google Scholar 

  • Flower NE, Kenchington W (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J Royal Microscop Soc 86:297–310

    Article  CAS  Google Scholar 

  • Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 103:9428–9433

    Article  CAS  Google Scholar 

  • Fraser RDB, Macrae TP, Millward GR, Parry DAD, Suzuki E, Tulloch PA (1971) The molecular structure of keratins. Appl Polymer Symp 18:65–83

    Google Scholar 

  • Fu C, Shao Z, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529

    Article  CAS  Google Scholar 

  • Genç G, Narin G, Bayraktar O (2009) Spray drying as a method of producing silk sericin powders. JAMMR 37:78–86

    Google Scholar 

  • Gerrard JA, Fayle SE, Wilson AJ, Newberry MP, Ross M, Kavale S (1998) Dough properties and crumb strength of white pan bread as affected by microbial transglutaminase. J Food Sci 63:472–475

    Article  CAS  Google Scholar 

  • Gerrard JA, Brown PK, Fayle SE (2003a) Maillard crosslinking of food proteins ii: the reactions of glutaraldehyde, formaldehyde and glyceraldehyde with wheat proteins in vitro and in situ. Food Chem 80:35–43

    Article  CAS  Google Scholar 

  • Gerrard JA, Brown PK, Fayle SE (2003b) Maillard crosslinking of food proteins iii: the effects of glutaraldehyde, formaldehyde and glyceraldehyde upon bread and croissants. Food Chem 80:45–50

    Article  CAS  Google Scholar 

  • Gholami A, Tavanai H, Moradi AR (2011) Production of fibroin nanopowder through electrospraying. J Nanopart Res 13:2089–2098

    Article  CAS  Google Scholar 

  • Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18:1883–1889

    Article  CAS  Google Scholar 

  • Gillespie JM (1990) The Proteins of Hair and Other Hard α-Keratins. In: Goldman R, Steinert P (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, New York, pp 95–128

    Chapter  Google Scholar 

  • Girotti A, Reguera J, Rodriguez-Cabello JC, Arias FJ, Alonso M, Testera AM (2004) Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J Mater Sci Mater Med 15:479–484

    Article  CAS  PubMed  Google Scholar 

  • Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13:304–312

    Article  CAS  PubMed  Google Scholar 

  • Gomes G, Silva-Zacarin EC, Zara FJ, Silva de Moraes RL, Caetano FH (2004) Macromolecular array patterns of silk gland secretion in social Hymenoptera larvae. Genet Mol Res 3:309–322

    CAS  PubMed  Google Scholar 

  • Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32:4255–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorham SD, Light ND, Diamond AM, Willins MJ, Bailey AJ, Wess TJ, Leslie NJ (1992) Effect of chemical modifications on the susceptibility of collagen to proteolysis II Dehydrothermal crosslinking. Int J Biol Macromol 14:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hacker DL, De Jesus M, Wurm FM (2009) 25 years of recombinant proteins from reactor-grown cells – where do we go from here? Biotechnol Adv 27:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242

    Article  CAS  PubMed  Google Scholar 

  • Hardy JG, Scheibel TR (2009) Production and processing of spider silk proteins. J Polym Sci A Polym Chem 47:3957–3963

    Article  CAS  Google Scholar 

  • Hardy JG, Scheibel TR (2010) Composite materials based on silk proteins. Prog Polym Sci 35:1093–1115

    Article  CAS  Google Scholar 

  • Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327

    Article  CAS  Google Scholar 

  • Heikkilä P, Sipilä A, Peltola M, Harlin A (2007) Electrospun PA-66 coating on textile surfaces. Text Res J 77:864–870

    Article  CAS  Google Scholar 

  • Heilshorn SC, Liu JC, Tirrell DA (2005) Cell-binding domain context affects cell behavior on engineered proteins. Biomacromolecules 6:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hino T, Tanimoto M, Shimabayashi S (2003) Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci 266:68–73

    Article  CAS  PubMed  Google Scholar 

  • Hoeve CAJ, Flory PJ (1974) The elastic properties of elastin. Biopolymers 13:677–686

    Article  CAS  PubMed  Google Scholar 

  • Holland GP, Creager MS, Jenkins JE, Lewis RV, Yarger JL (2008) Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J Am Chem Soc 130:9871–9877

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Kaplan DL, Cebe P (2006) Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–6170

    Article  CAS  Google Scholar 

  • Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan DL (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Foo C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28:2358–2367

    Article  CAS  PubMed  Google Scholar 

  • Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks – biopolymers with potential for future applications. Polymers 3:640–661

    Article  CAS  Google Scholar 

  • Huson MG, Church JS, Poole JM, Weisman S, Sriskantha A, Warden AC, Campbell PM, Ramshaw JAM, Sutherland TD (2012) Controlling the molecular structure and physical properties of artificial honeybee silk by heating or by immersion in solvents. PLoS One 7:e52308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang KY, Yu W-R (2009) Measuring tensile strength of nanofibers using conductive substrates and dynamic mechanical analyser. Fiber Polym 10:703–708

    Article  Google Scholar 

  • Hwang S, Shao Q, Williams H, Hilty C, Gao YQ (2011) Methanol strengthens hydrogen bonds and weakens hydrophobic interactions in proteins – a combined molecular dynamics and NMR study. J Phys Chem B 115:6653–6660

    Article  CAS  PubMed  Google Scholar 

  • Jiankang H, Dichen L, Yaxiong L, Bo Y, Bingheng L, Qin L (2007) Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer 48:4578–4588

    Article  CAS  Google Scholar 

  • Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Jones EY, Miller A (1991) Analysis of structural design features in collagen. J Mol Biol 218:209–219

    Article  CAS  PubMed  Google Scholar 

  • Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL (2015) Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. Biomater Sci Eng 1:780–788

    Article  CAS  Google Scholar 

  • Kameda T (2012) Quantifying the fraction of alanine residues in an α-helical conformation in hornet silk using solid-state NMR. Polymer J 44:876–881

    Article  CAS  Google Scholar 

  • Kameda T, Tamada Y (2009) Variable-temperature13C solid-state NMR study of the molecular structure of honeybee wax and silk. Int J Biol Macromol 44:64–69

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Kojima K, Miyazawa M, Fujiwara S (2005) Film formation and structural characterization of silk of the hornet Vespa simillima xanthoptera Cameron. Z Naturforsch 60:906–914

    CAS  Google Scholar 

  • Kameda T, Kojima K, Togawa E, Sezutsu H, Zhang Q, Teramoto H, Tamada Y (2010) Drawing-induced changes in morphology and mechanical properties of hornet silk gel films. Biomacromolecules 11:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Ahn S, Yoon H, Kim Y, Chun W (2009) A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem 19:8817–8823

    Article  CAS  Google Scholar 

  • Kim MK, Lee JY, Oh H, Song DW, Kwak HW, Yun H, Um IC, Park YH, Lee KH (2015a) Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. Int J Biol Macromol 79:988–995

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Naskar D, Kundu SC, Bishop DP, Doble PA, Boddy AV, Chan H-K, Wall IB, Chrzanowski W (2015b) Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer. Sci Rep 5:11878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, Yarmush ML (2011) Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A 108:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Krishnaji ST, Kaplan DL (2013) Bioengineered chimerics silk-uranium binding proteins. Macromol Biosci 13:256–264

    Article  CAS  PubMed  Google Scholar 

  • Lai T, Yang Y, Ng SK (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6:579–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2008) Processing conditions for the formation of spider silk microspheres. Chem Sus Chem 1:413–416

    Article  CAS  Google Scholar 

  • Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, Kaplan DL (2002) Effect of hydration on silk film material properties. Macromol Biosci 10:393–403

    Article  CAS  Google Scholar 

  • Lawrence BD, Omenetto F, Chui K, Kaplan DL (2008) Processing methods to control silk fibroin film biomaterial features. J Mater Sci 43:6967–6985

    Article  CAS  Google Scholar 

  • Lefèvre T, Rousseau M-E, Pézolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Daggett V (2002) The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides. Biopolymers 68:121–129

    Article  CAS  Google Scholar 

  • Li Z, Wang C (2013) Effects of working parameters on electrospinning. In: One dimensional nanostructures. Electrospinning technique and unique nanofibers. Springer, Berlin/Heidelberg, pp 15–28

    Chapter  Google Scholar 

  • Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, Rizzo DJ, Li D, Staii C, Pugno NM, Wong JY, Kaplan DL, Buehler MJ (2015) Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 6:6892–7904

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JC, Tirrell DA (2008) Cell response to RGD density in cross-linked artificial extracellular matrix protein films. Biomacromolecules 9:2984–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JC, Heilshorn SC, Tirrell DA (2004) Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 5:497–504

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, Kaplan DL (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Protein Chem 70:37–78

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Lyerla JR Jr, Torchia DA (1975) Molecular mobility and structure of elastin deduced from the solvent and temperature dependence of 13C magnetic resonance relaxation data. Biochemistry 14:5175–5183

    Article  CAS  PubMed  Google Scholar 

  • Magalhäes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharmaceut Sci 10:388–404

    Google Scholar 

  • Malencik DA, Anderson SR (1996) Dityrosine formation in calmodulin: cross-linking and polymerization catalyzed by Arthromyces peroxidase. Biochemistry 35:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Factories 14:57–71

    Article  CAS  Google Scholar 

  • Marsano E, Corsini P, Arosio C, Boschi A, Mormino M, Freddi G (2005) Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int J Biol Macromol 37:179–188

    Article  CAS  PubMed  Google Scholar 

  • Marshall RC, Orwin DFG, Gillespie JM (1991) Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev:4:47–4:83

    Google Scholar 

  • Martínez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23:965–971

    Article  PubMed  CAS  Google Scholar 

  • Massodi I, Bidwell GL III, Raucher D (2005) Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J Control Release 108:396–408

    Article  CAS  PubMed  Google Scholar 

  • Massodi I, Moktan S, Rawat A, Bidwell GL III, Raucher D (2010) Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int J Cancer 126:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M et al (2012) Recombinant protein production in yeasts. In: Lorence A (ed) Recombinant gene expression. Humana Press, Totowa, pp 329–358

    Chapter  Google Scholar 

  • Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk−silica fusion proteins for bone regeneration. Chem Mater 22:5780–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithieux SM, Wise SG, Weiss AS (2013) Tropoelastin – a multifaceted naturally smart material. Adv Drug Deliv Rev 65:421–428

    Article  CAS  PubMed  Google Scholar 

  • Mo C, Wu P, Chen X, Shao Z (2006) Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin. Appl Spectrosc 60:1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Mohs A, Silva T, Yoshida T, Amin R, Lukomski S, Inouye M, Brodsky B (2007) Mechanism of stabilization of bacterial collagen triple helix in the absence of hydroxyproline. J Biol Chem 282:29757–29765

    Article  CAS  PubMed  Google Scholar 

  • Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Mie M, Mihara H, Nakamura M, Kobatake E (2009) Construction of a multi-functional extracellular matrix protein that increases number of N1E-115 neuroblast cells having neurites. J Biomed Mater Res B Appl Biomater 91:425–432

    Article  PubMed  CAS  Google Scholar 

  • Nazarov R, Jin H-J, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Gil ES, Kim HJ, Lee K, Kaplan DL (2010) Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31:6162–6172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge SM, Elsden DF, Thomas J, Dorfman A, Telser A, Ho P-L (1966) Incorporation of labelled lysine into the desmosine cross-bridges in elastin. Nature 209:399–400

    Article  CAS  PubMed  Google Scholar 

  • Peng YY, Howell L, Stoichevska V, Werkmeister JA, Dumsday GJ, Ramshaw JAM (2012) Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microb Cell Factories 11:146–153

    Article  CAS  Google Scholar 

  • Peng YY, Stoichevska V, Schacht K, Werkmeister JA, Ramshaw JA (2014a) Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes. J Biomed Mater Res A 102:2189–2196

    Article  PubMed  CAS  Google Scholar 

  • Peng YY, Stoichevska V, Madsen S, Howell L, Dumsday GJ, Werkmeister JA, Ramshaw JAM (2014b) A simple cost-effective methodology for large-scale purification of recombinant non-animal collagens. Appl Microbiol Biotechnol 98:1807–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rigueiro JP, Biancotto L, Corsini P, Marsano E, Elices M, Plaza GR, Guinea GV (2009) Supramolecular organization of regenerated silkworm silk fibers. Int J Biol Macromol 44:195–202

    Article  PubMed  CAS  Google Scholar 

  • Persikov AV, Ramshaw JAM, Brodsky B (2005) Prediction of collagen stability from amino acid sequence. J Biol Chem 280:19343–19349

    Article  CAS  PubMed  Google Scholar 

  • Phelps JP, Dang N, Rasochova L (2007) Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis. J Virol Methods 141:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pometun MS, Chekmenev EY, Wittebort RJ (2004) Quantitative observation of backbone disorder in native elastin. J Biol Chem 279:7982–7987

    Article  CAS  PubMed  Google Scholar 

  • Poole J, Church JS, Woodhead AL, Huson MG, Sriskantha A, Kyratzis IL, Sutherland TD (2013) Continuous production of flexible fibers from transgenically produced honeybee silk proteins. Macromol Biosci 13:1321–1326

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Hu X, Peggy Cebe P, Kaplan DL (2012) Mechanism of resilin elasticity. Nat Commun 3:1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Que RA, Chan SWP, Jabaiah AM, Lathrop RH, Da Silva NA, Wang SW (2015) Tuning cellular response by modular design of bioactive domains in collagen. Biomaterials 53:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rajkhowa R, Levin B, Redmond SL, Li LH, Wang L, Kanwar JR, Atlas MD, Wang X (2011) Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J Biomed Mater Res A 97:37–45

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran G, Kartha G (1954) Structure of collagen. Nature 174:269–270

    Article  CAS  PubMed  Google Scholar 

  • Rapson TD, Church JS, Trueman HE, Dacres H, Sutherland TD, Trowell SC (2014) Micromolar biosensing of nitric oxide using myoglobin immobilised in a synthetic silk film. Biosens Bioelectron 62:214–220

    Article  CAS  PubMed  Google Scholar 

  • Rapson TD, Sutherland TD, Church JS, Trueman HE, Dacres H, Trowell SC (2015) de novo engineering of solid-state metalloproteins using recombinant coiled-coil silk. Biomater Sci Eng 1:1114–1120

    Article  CAS  Google Scholar 

  • Rasmussen M, Jacobsson M, Björck L (2003) Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J Biol Chem 278:32313–32316

    Article  CAS  PubMed  Google Scholar 

  • Reiser K, McCormick RJ, Rucker RB (1992) Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J 6:2439–2449

    CAS  PubMed  Google Scholar 

  • Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Cabello JC, Reguera J, Girotti A, Arias J, Alonso M (2006) Genetic engineering of protein-based polymers: the example of elastinlike polymers. In Vancso GJ (ed) Ordered Polymeric Nanostructures at Surfaces Adv Polym Sci 200, Springer, Berlin, p 119–167

    Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Google Scholar 

  • Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comparative Biochemistry 4: a comprehensive treatise. Academic Press, New York, pp 397–433

    Chapter  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189

    Article  CAS  PubMed  Google Scholar 

  • Seidel A, Liivak O, Jelinski LW (1998) Artificial spinning of spider silk. Macromolecules 31:6733–6736

    Article  CAS  Google Scholar 

  • Seidel A, Liivak O, Calve S, Adaska J, Ji GD, Yang ZT, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties and structure. Macromolecules 33:775–780

    Article  CAS  Google Scholar 

  • Seo N, Russell BH, Rivera JJ, Liang X, Xu X, Afshar-Kharghan V, Höök M (2010) An engineered α1 integrin-binding collagenous sequence. J Biol Chem 285:31046–31054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sezutsu H, Kajiwara H, Kojima K, Mita K, Tamura T, Tamada Y, Kameda T (2007) Identification of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera Cameron. Biosci Biotechnol Biochem 71:2725–2734

    Article  CAS  PubMed  Google Scholar 

  • Shao ZZ, Vollrath F, Yang Y, Thøgersen HC (2003) Structure and behavior of regenerated spider silk. Macromolecules 36:1157–1161

    Article  CAS  Google Scholar 

  • Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828

    Article  CAS  PubMed  Google Scholar 

  • Siegel RC, Pinnell SR, Martin GR (1970) Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemist 9:4486–4492

    Article  CAS  Google Scholar 

  • Silva-Zacarin ECM, Silva de Moraes RLM, Taboga SR (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera:Apidae). J Biosci 28:753–764

    Article  PubMed  Google Scholar 

  • Slotta UK, Rammensee S, Gorb S, Scheibel T (2008) An engineered spider silk protein forms microspheres. Angew Chem 47:4592–4594

    Article  CAS  Google Scholar 

  • Straley KS, Heilshorn SC (2009) Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 5:114–124

    Article  CAS  Google Scholar 

  • Sutherland TD, Weisman S, Trueman TE, Sriskantha A, Trueman JWH, Haritos VS (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Young J, Weisman S, Hayashi CY, Merrit D (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Church JS, Hu X, Huson MG, Kaplan DL, Weisman S (2011) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6:e16489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson MG, Werkmeister JA, Glattauer V, Stoichevska V, Mudie ST, Haritos VS, Ramshaw JAM (2013) A new class of animal collagen masquerading as an insect silk. Sci Rep 3:2864

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Trueman HE, Walker AA, Weisman S, Campbell PM, Dong Z, Huson MG, Woodhead AL, Church JS (2014) Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. J Struct Biol 186:402–411

    Article  CAS  PubMed  Google Scholar 

  • Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, San Antonio JD (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Kadowaki K, Udaka S (1989) Screening and characterization of protein-hyperproducing bacteria without detectable exoprotease activity. Agric Biol Chem 53:691–699

    CAS  Google Scholar 

  • Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109:923–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Tjin MS, Low P, Fong E (2014) Recombinant elastomeric protein biopolymers: progress and prospects. Polymer J 46:444–451

    Article  CAS  Google Scholar 

  • Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan DL (2014) Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 10:1612–1626

    Article  CAS  PubMed  Google Scholar 

  • Torchia DA, Piez KA (1973) Mobility of elastin chains as determined by13C nuclear magnetic resonance. J Mol Biol 76:419–424

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G (1994) Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions. J Polym Sci Part B 32:961–968

    Article  CAS  Google Scholar 

  • Urry DW (1988) Entropic elastic processes in protein mechanisms I Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7:1–34

    Article  CAS  PubMed  Google Scholar 

  • Urry D, Luan C-H, Peng SQ (1995) Molecular biophysics of elastin structure, function and pathology. Ciba Foundation Symp 192:4–30

    CAS  Google Scholar 

  • van Beek JD, Beaulieu L, Schäfer H, Demura M, Asakura T, Meier BH (2000) Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405:1077–1079

    Article  PubMed  Google Scholar 

  • van Eldijk MB, McGann CL, Kiick KL, van Hest JCM (2012) Elastomeric polypeptides. Top Curr Chem 310:71–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  CAS  Google Scholar 

  • Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49:4226–4229

    Article  CAS  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Porter D (2006) Spider silk as archetypal protein elastomer. Soft Matter 2:377–385

    Article  CAS  Google Scholar 

  • Walker AA, Weisman S, Church JS, Merritt DJ, Mudie ST, Sutherland TD (2012) Silk from crickets: a new twist on spinning. PLoS One 7:e30408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AA, Church JS, Woodhead AL, Sutherland TD (2013a) Silverfish silk is formed by entanglement of randomly coiled protein chains. Insect Biochem Mol Biol 43:572–579

    Article  CAS  PubMed  Google Scholar 

  • Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD (2013b) Micellar refolding of coiled-coil honeybee silk proteins. J Mater Chem B 1:3644–3651

    Article  CAS  Google Scholar 

  • Walker AA, Holland C, Sutherland TD (2015) More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk. Proc R Soc B 282:20150259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J et al (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103:9428–9433

    Google Scholar 

  • Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL (2007) Silk microspheres for encapsulation and controlled release. J Control Release 117:360–370

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yucel T, Lu Q, Hu X, Kapla DL (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31:1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomat 2012:785920

    Google Scholar 

  • Weis-Fogh T (1961a) Thermodynamic properties of resilin, a rubber-like protein. J Mol Biol 3:520–531

    Article  CAS  Google Scholar 

  • Weis-Fogh T (1961b) Molecular interpretation of the elasticity of resilin, a rubber-like protein. J Mol Biol 3:648–667

    Article  CAS  Google Scholar 

  • Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJW, Dumsday GJ, Sutherland TD (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 31:2695–2700

    Article  CAS  PubMed  Google Scholar 

  • Werkmeister JA, Ramshaw JAM (2012) Recombinant protein scaffolds for tissue engineering. Biomed Mater 7:012002

    Article  PubMed  CAS  Google Scholar 

  • Widhe M, Johansson U, Hillerdahl C-O, Hedhammar M (2013) Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 34:8223–8234

    Article  CAS  PubMed  Google Scholar 

  • Wohlrab S, Müller S, Schmidt A, Neubauer S, Kessler H, Leal-Egaña A, Scheibel T (2012) Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 33:6650–6659

    Article  CAS  PubMed  Google Scholar 

  • Xia XX, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XX, Xu Q, Hu X, Qin G, Kaplan DL (2011) Tunable self-assembly of genetically engineered silk-elastin-like protein polymers. Biomacromolecules 12:3844–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Zhang H, Shao H, Hu X (2006) Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. Int J Biol Macromol 38:284–288

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhou G, Knight DP, Shao Z, Chen X (2010) Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromolecules 11:1–5

    Article  CAS  PubMed  Google Scholar 

  • Yannas IV, Tobolsky AV (1967) Cross-linking of gelatin by dehydration. Nature 215:509–510

    Article  CAS  PubMed  Google Scholar 

  • Yener F, Jirsak O (2012) Comparison between the needle and roller electrospinning of polyvinylbutyral. J Nanomater 2012:839317

    Article  CAS  Google Scholar 

  • Yu Z, An B, Ramshaw JAM, Brodsky B (2014) Bacterial collagen-like proteins that form triple helical structures. J Struct Biol 186:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zara JF, Caetano FH (2002) Ultrastructure of the salivary glands of Pachycondyla (= Neoponera) villosa (Fabricius) (Formicidae: Ponerinae): functional changes during the last larval instar. Cytologia 67:267–280

    Article  Google Scholar 

  • Zhang Y, Malamakal RM, Chenoweth DM (2015) Aza-glycine induces collagen hyperstability. J Am Chem Soc 137:12422–12425

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Fox JM, Olson NH, Baker TS, Young MJ (1995) In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Esherichia coli and in vitro-transcribed viral cDNA. Virology 207:486–494

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Shao Z, Knight DP, Yan J, Chen X (2009) Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv Mater 21:366–370

    Article  CAS  Google Scholar 

  • Zhou H, Shao Z, Chen X (2014) Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chin J Polym Sci 32:29–34

    Article  CAS  Google Scholar 

  • Ziegler K (1977) Crosslinking and self-crosslinking in keratin fibres. In: Asquith RS (ed) Chemistry of natural protein fibers. Springer, New York, pp 267–300

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara D. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sutherland, T.D., Rapson, T.D., Huson, M.G., Church, J.S. (2017). Recombinant Structural Proteins and Their Use in Future Materials. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_15

Download citation

Publish with us

Policies and ethics