Skip to main content

Titin and Nebulin in Thick and Thin Filament Length Regulation

  • Chapter
  • First Online:
Fibrous Proteins: Structures and Mechanisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or ‘molecular rulers’, terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BTS:

N-benzyl-p-toluenesulphonamide

Hsp90a:

Heat shock protein 90a

ITF:

Intra-flagellar transport machinery

ML-7:

Myosin kinase inhibitor (and inhibitor to other kinases)

MLCK:

Myosin light chain kinase

MyBP-C:

Myosin binding protein-C (C-protein)

RyR:

Ryanodine receptor

Tmod:

Tropomodulin

TRiC/CCT:

T-complex protein-1 ring complex

UNC45b:

Protein unc-45 homolog B (unc45 myosin chaperone B)

References

  • Abuladze NK, Gingery M, Tsai J, Eiserling FA (1994) Tail length determination in bacteriophage T4. Virology 199:301–310

    Article  CAS  PubMed  Google Scholar 

  • Aizawa S-I (2012) Mystery of FliK in length control of the flagellar hook. J Bacteriol 194:4798–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alahiotis SN (1983) Heat shock proteins: a new view on the temperature compensation. Comp Biochem Physiol 75B:379–387

    CAS  Google Scholar 

  • Albanèse V, Yam AY-W, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88

    Article  PubMed  CAS  Google Scholar 

  • Al-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP (2013) Atomic model of the human cardiac muscle myosin filament. Proc Natl Acad Sci U S A 110:318–323

    Article  CAS  PubMed  Google Scholar 

  • Allen ER, Pepe FA (1965) Ultrastructure of developing muscle cells in the chick embryo. Am J Anat 116:115–148

    Article  CAS  PubMed  Google Scholar 

  • Altschuler GM, Klug DR, Willison KR (2005) Unfolding energetics of G-alpha-actin: a discrete intermediate can be re-folded to the native state by CCT. J Mol Biol 353:385–396

    Article  CAS  PubMed  Google Scholar 

  • Anderson BR, Granzier HL (2012) Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog Biophys Mol Biol 110(2–3,SI):204–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura T, Nakamura T, Hiroi S, Satoh M, Takahashi M, Ohbuchi N, Ueda K, Nouchi T, Yamaguchi N, Akai J, Matsumori A, Sasayama S, Kimura A (2000) Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Hum Genet 107:440–451

    Article  CAS  PubMed  Google Scholar 

  • Bang M-L, Chen J (2015) Roles of nebulin family members in the heart. Circ J 79:2081–2087

    Article  PubMed  Google Scholar 

  • Bang M-L, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, Expression of an unusual ~700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Bang M-L, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671

    Article  CAS  PubMed  Google Scholar 

  • Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev 3:131–140

    Article  CAS  PubMed  Google Scholar 

  • Begum S, Komiyama M, Toyota N, Obinata T, Maruyama K, Shimada Y (1998) Differentiation of muscle-specific proteins in chicken somites as studied by immunofluorescence microscopy. Cell Tissue Res 293:305–311

    Article  CAS  PubMed  Google Scholar 

  • Berman SA, Wilson NF, Haas NA, Lefebvre PA (2003) A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Brennan C, Mangoli M, Dyer CEF, Ashworth R (2005) Acetylcholine and calcium signalling regulates muscle fibre formation in the Zebrafish embryo. J Cell Sci 118:5181–5190

    Article  CAS  PubMed  Google Scholar 

  • Buck D, Hudson BD, Ottenheijm CAC, Labeit S, Granzier H (2010) Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development. J Struct Biol 170:325–333

    Google Scholar 

  • Bullard B, Linke WA, Leonard K (2002) Varieties of elastic protein in invertebrate muscles. J Muscle Res Cell Motil 23:435–447

    Article  PubMed  Google Scholar 

  • Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, Ding L, Labeit S, Horwitz J, Leonard KR, Linke WA (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279:7917–7924

    Article  CAS  PubMed  Google Scholar 

  • Bullard B, Burkart C, Labeit S, Leonard K (2005) The function of elastic proteins in the oscillatory contraction of insect flight muscle. J Muscle Res Cell Motil 26:479–485

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne T, Muhamad F, Luther PK (2008) Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovasc Res 77:707–712

    Article  CAS  PubMed  Google Scholar 

  • Burkart C, Qiu F, Brendel S, Benes V, Hååg P, Labeit S, Leonard K, Bullard B (2007) Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J Mol Biol 367:953–969

    Article  CAS  PubMed  Google Scholar 

  • Cantino ME, Chew MWK, Luther PK, Morris E, Squire JM (2002) Structure and nucleotide-dependent changes of thick filaments in relaxed and rigor plaice fin muscle. J Struct Biol 137:164–175

    Article  CAS  PubMed  Google Scholar 

  • Carroll SL, Horowits R (2000) Myofibrillogenesis and formation of cell contacts mediate the localization of N-RAP in cultured chick cardiomyocytes. Cell Motil Cytoskeleton 47:63–76

    Article  CAS  PubMed  Google Scholar 

  • Carroll S, Lu S, Herrera AH, Horowits R (2004) N-RAP scaffolds I-Z-I assembly during myofibrillogenesis in cultured chick cardiomyocytes. J Cell Sci 117:105–114

    Article  CAS  PubMed  Google Scholar 

  • Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24

    Article  CAS  PubMed  Google Scholar 

  • Castillo A, Nowak R, Littlefield KP, Fowler VM, Littlefield RS (2009) A nebulin ruler does not dictate thin filament lengths. Biophys J 96:1856–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitás K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    Article  CAS  PubMed  Google Scholar 

  • Chen MJG, Wang K (1994) Conformational studies of a two-module fragment of nebulin and implications for actin association. Arch Biochem Biophys 310:310–317

    Article  CAS  PubMed  Google Scholar 

  • Chen MJG, Shih CL, Wang K (1993) Nebulin as an actin zipper: a two-module nebulin fragment promotes actin nucleation and stabilizes actin filaments. J Biol Chem 268:20327–20334

    CAS  PubMed  Google Scholar 

  • Chitose R, Watanabe A, Asano M, Hanashima A, Sasano K, Bao Y, Maruyama K, Kimura S (2010) Isolation of nebulin from rabbit skeletal muscle and its interaction with actin. J Biomed Biotech 2010:108495. doi:10.1155/2010/108495

    Article  CAS  Google Scholar 

  • Chu M, Gregorio CC, Pappas CT (2016) Nebulin, a multi-functional giant. J Exp Biol 219:146–152

    Article  PubMed  Google Scholar 

  • Colley NJ, Tokuyasu KT, Singer SJ (1990) The early expression of myofibrillar proteins in round postmitotic myoblasts of embryonic skeletal muscle. J Cell Sci 95:11–22

    CAS  PubMed  Google Scholar 

  • Collingridge P, Brownlee C, Wheeler GL (2013) Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr Biol 23:2311–2318

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Offer G (1976) Axial arrangement of crossbridges in thick filaments of vertebrate skeletal muscle. J Mol Biol 102:325–332

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford GL, Horowits R (2011) Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle. Biophys Rev 3:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cripps RM, Suggs JA, Bernstein SI (1999) Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J 18:1793–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JS (1981) Pressure-jump studies on the length-regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament. Biochem J 197:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JS (1985) Kinetics and thermodynamics of the assembly of the parallel- and antiparallel-packed sections of synthetic thick filaments of skeletal myosin: pressure-jump study. Biochemist 24:5263–5269

    Article  CAS  Google Scholar 

  • Davis JS (1988) Assembly processes in vertebrate skeletal thick filament formation. Annu Rev Biophys Biophys Chem 17:217–239

    Article  CAS  PubMed  Google Scholar 

  • De Deyne P (2000) Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol 279:C1801–C1811

    Google Scholar 

  • Dessouky DA, Hibbs RG (1965) An electron microscope study of the development of the somatic muscle of the chick embryo. Am J Anat 116:523–566

    Article  CAS  PubMed  Google Scholar 

  • Dlugosz AA, Antin PB, Nachmias VT, Holtzer H (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278

    Article  CAS  PubMed  Google Scholar 

  • Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26:114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donner K, Sandbacka M, Lehtokari VL, Wallgren-Pettersson C, Pelin K (2004) Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur J Hum Genet 12:744–751

    Article  CAS  PubMed  Google Scholar 

  • Donner K, Nowak KJ, Aro M, Pelin K, Wallgren-Pettersson C (2006) Developmental and muscle-type-specific expression of mouse nebulin exons 127 and 128. Genomics 88:489–495

    Article  CAS  PubMed  Google Scholar 

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    Article  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Sanger JW (2008a) Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 318:236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du SJ, Li H, Bian Y, Zhong Y (2008b) Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 105:554–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du SJ, Tan X, Zhang J (2014) SMYD Proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec 297:1650–1662

    Article  CAS  Google Scholar 

  • Dunn AY, Melville MW, Frydman J (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J Struct Biol 135:176–184

    Article  CAS  PubMed  Google Scholar 

  • Eddinger TJ (1998) Myosin heavy chain isoforms and dynamic contractile properties: skeletal versus smooth muscle. Comp Biochem Physiol B 119:425–434

    Article  CAS  PubMed  Google Scholar 

  • Eggers DK, Welch WJ, Hansen WJ (1997) Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol Biol Cell 8:1559–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard J-C (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112:1529–1539

    CAS  PubMed  Google Scholar 

  • Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esham M, Bryan K, Milnes J, Holmes WB, Moncman CL (2007) Expression of nebulette during early cardiac development. Cell Motil Cytoskeleton 64:258–273

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308:133–143

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Roostalu U, Strähle U (2008) Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180:1163–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes I, Schöck F (2014) The nebulin repeat protein Lasp regulates I-band architecture and filament spacing in myofibrils. J Cell Biol 206:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari MB, Spitzer NC (1999) Calcium signaling in the developing Xenopus myotome. Dev Biol 213:269–282

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MB, Podugu S, Eskew JD (2006) Assembling the myofibril – coordinating contractile cable construction with calcium. Cell Biochem Biophys 45:317–336

    Article  CAS  PubMed  Google Scholar 

  • Friedrich BM, Buxboim A, Discher DE, Safran SA (2011) Striated acto-myosin fibers can reorganize and register in response to elastic interactions with the matrix. Biophys J 100:2706–2715

    Google Scholar 

  • Fischman DA (1967) An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol 32:557–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler VM, McKeown CR, Fischer RS (2006) Nebulin: does it measure up as a ruler? Curr Biol 16:R18–R20

    Article  CAS  PubMed  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  PubMed  Google Scholar 

  • Fürst DO, Gautel M (1995) The anatomy of a molecular giant: how the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J Mol Cell Cardiol 27:951–959

    Article  PubMed  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    Article  PubMed  Google Scholar 

  • Fürst DO, Nave R, Osborn M, Weber K (1989a) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils. J Cell Sci 94:119–125

    PubMed  Google Scholar 

  • Fürst DO, Osborn M, Weber K (1989b) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    Article  PubMed  Google Scholar 

  • Fürst DO, Vinkemeier U, Weber K (1992) Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full-length human cDNA. J Cell Sci 102:769–778

    PubMed  Google Scholar 

  • Gauthier GF, Mason-Savas A (1993) Ribosomes in the skeletal muscle filament lattice. Anat Rec 237:149–156

    Article  CAS  PubMed  Google Scholar 

  • Gazda L, Pokrzywa W, Hellerschmied D, Löwe T, Forné I, Mueller-Planitz F, Hoppe T, Clausen T (2013) The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 152:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:N75

    Article  CAS  Google Scholar 

  • Geach TJ, Hirst EMA, Zimmerman LB (2015) Contractile activity is required for Z-disc sarcomere maturation in vivo. Genesis 53:299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehring NW, Hyman AA (2012) Organelle growth control through limiting pools of cytoplasmic components. Curr Biol 22:R330–R339

    Article  CAS  PubMed  Google Scholar 

  • Gokhin DS, Lewis RA, McKeown CR, Nowak RB, Kim NE, Littlefield RS, Lieber RL, Fowler VM (2010) Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology. J Cell Biol 189:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokhin DS, Ochala J, Domenighetti AA, Fowler VM (2015) Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development 142:4351–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein αB-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309–319

    Article  CAS  PubMed  Google Scholar 

  • Gotthardt M, Hammer RE, Hübner N, Monti J, Witt CC, McNabb M, Richardson JA, Granzier H, Labeit S, Herz J (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem 278:6059–6065

    Article  CAS  PubMed  Google Scholar 

  • Gramlich M, Michely B, Krohne C, Heuser A, Erdmann B, Klaassen S, Hudson B, Magarin M, Kirchner F, Todiras M, Granzier H, Labeit S, Thierfelder L, Gerull B (2009) Stress-induced dilated cardiomyopathy in a knock-in mouse model mimicking human titin-based disease. J Mol Cell Cardiol 47:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaser ML, Pleitner JM (2014) Titin isoform size is not correlated with thin filament length in rat skeletal muscle. Front Physiol 5:1–9

    Article  Google Scholar 

  • Gregorio CC, Weber A, Bondad M, Pennise CR, Fowler VM (1995) Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377:83–86

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375:784–787

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Bharmal SJ, Esbona K, Greaser ML (2010) Titin diversity - alternative splicing gone wild. J Biomed Biotech 2010:753675. doi:10.1155/2010/753675

  • Hagopian M, Spiro D (1968) The filament lattice of cockroach thoracic muscle. J Cell Biol 36:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanashima A, Kubokawa K, Kimura S (2009) Structure of the amphioxus nebulin gene and evolution of the nebulin family genes. Gene 443:76–82

    Article  CAS  PubMed  Google Scholar 

  • Handel SE, Greaser ML, Schultz E, Wang SM, Bulinski JC, Lin JJC, Lessard JL (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res 263:419–430

    Article  CAS  PubMed  Google Scholar 

  • Harrington WF, Rodgers ME (1984) Myosin. Annu Rev Biochem 53:35–73

    Article  CAS  PubMed  Google Scholar 

  • Harris BN, Li H, Terry M, Ferrari MB (2005) Calcium transients regulate titin organization during myofibrillogenesis. Cell Motil Cytoskeleton 60:129–139

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG, Lowey S, Cohen C (1971) Assembly of myosin. J Mol Biol 59:531–535

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (1963) The fine structure of differentiating muscle in the salamander tail. Zeitschrift fiir Zellforschung 59:6–34

    Article  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Ishiwata S (1985) Disassembly kinetics of thick filaments in rabbit skeletal muscle fibers: Effects of ionic strength, Ca2+ concentration, pH, temperature, and cross-bridges on the stability of thick filament structure. Biophys J 47:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi H, Funatsu T, Ishijima A, Okamura N, Ishiwata S (1986) Accumulated strain mechanism for length determination of thick filaments in skeletal muscle. I. Experimental bases. J Muscle Res Cell Motil 7:491–500

    Article  CAS  PubMed  Google Scholar 

  • Hill CS, Duran S, Lin Z, Weber K, Holtzer H (1986) Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 103:2185–2196

    Article  CAS  PubMed  Google Scholar 

  • Holtzer H, Hijikata T, Lin ZX, Zhang ZQ, Holtzer S, Protasi F, Franzini-Armstrong C, Sweeney HL (1997) Independent assembly of 1.6 μm long bipolar MHC filaments and I-Z-I bodies. Cell Struct Funct 22:83–93

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT (2012) Flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 194:4793–4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3:631–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1967) Recent X-ray and electron microscope studies of striated muscle. J Gen Physiol 50:71–83

    Google Scholar 

  • Huxley HE, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434

    Google Scholar 

  • Isaacs WB, Kim IS, Struve A, Fulton AB (1992) Association of titin and myosin heavy chain in developing skeletal muscle. Proc Natl Acad Sci U S A 89:7496–7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S (1981) Melting from both ends of an A-band in a myofibril: observation with a phase-contrast microscope. J Biochem 89:1647–1650

    CAS  PubMed  Google Scholar 

  • Ishiwata S, Funatsu T (1985) Does actin bind to the ends of thin filaments in skeletal muscle? J Cell Biol 100:282–291

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S, Muramatsu K, Higuchi H (1985) Disassembly from both ends of thick filaments in rabbit skeletal muscle fibers. Biophys J 47:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J-P, Wang K (1991) Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere: Interaction of actin and cloned human nebulin fragments. FEBS Lett 281:93–96

    Article  CAS  PubMed  Google Scholar 

  • Josephs R, Harrington WF (1966) Studies on the formation and physical chemical properties of synthetic myosin filaments. Biochemistry 5:3474–3487

    Article  CAS  PubMed  Google Scholar 

  • Journet L, Agrain C, Broz P, Cornelis GR (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–1760

    Article  CAS  PubMed  Google Scholar 

  • Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, Hassel D, Marquart S, Dahme T, Vogel B, Fishman MC, Katus HA, Strähle U, Rottbauer W (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 124:3127–3136

    Article  CAS  PubMed  Google Scholar 

  • Kagawa M, Sato N, Obinata T (2006) Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture. Zool Sci 23:969–975

    Article  CAS  PubMed  Google Scholar 

  • Kaminer B, Bell AL (1966) Synthetic myosin filaments. Science 151:323–324

    Article  CAS  PubMed  Google Scholar 

  • Katsura I (1987) Determination of bacteriophage-lambda tail length by a protein ruler. Nature 327:73–75

    Article  CAS  PubMed  Google Scholar 

  • Katsura I (1990) Mechanism of length determination in bacteriophage lambda tails. Adv Biophys 26:1–18

    Article  CAS  PubMed  Google Scholar 

  • Katsura I, Noda H (1971) Studies on the formation and physical chemical properties of synthetic myosin filaments. J Biochem 69:219–229

    CAS  PubMed  Google Scholar 

  • Katzemich A, Kreisköther N, Alexandrovich A, Elliott C, Schöck F, Leonard K, Sparrow J, Bullard B (2012) The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 125:3367–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura M, Maruyama K (1970) Electron microscopic particle length of F-actin polymerized in vitro. J Biochem 67:437–457

    CAS  PubMed  Google Scholar 

  • Kazmierski ST, Antin PB, Witt CC, Huebner N, McElhinny AS, Labeit S, Gregorio CC (2003) The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 328:835–846

    Article  CAS  PubMed  Google Scholar 

  • Kelly DE (1969) Myofibrillogenesis and Z-band differentiation. Anat Rec 163:403–426

    Article  CAS  PubMed  Google Scholar 

  • Komiyama M, Zhou Z-H, Maruyama K, Shimada Y (1992) Spatial relationship of nebulin relative to other myofibrillar proteins during myogenesis in embryonic chick skeletal muscle cells in vitro. J Muscle Res Cell Motil 13:48–54

    Article  CAS  PubMed  Google Scholar 

  • Komiyama M, Kouchi K, Maruyama K, Shimada Y (1993) Dynamics of actin and assembly of connectin (titin) during myofibrillogenesis in embryonic chick cardiac muscle cells in vitro. Dev Dyn 196:291–299

    Article  CAS  PubMed  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89:1217–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger M, Wright J, Wang K (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman PA (2005) Dynamic changes in the length distribution of actin filaments during polymerization can be modulated by barbed end capping proteins. Cell Motil Cytoskeleton 61:1–8

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B (1996) The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248:308–315

    Google Scholar 

  • Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A, Trinick J (1990) A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345:273–276

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Gibson T, Lakey A, Leonard K, Zeviani M, Knight P, Wardale J, Trinick J (1991) Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 282:313–316

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513

    Article  CAS  PubMed  Google Scholar 

  • Larsen TH, Sætersdal T (1998) Translocation of 60S ribosomal subunit in spreading cardiac myocytes. J Histochem Cytochem 46:963–969

    Article  CAS  PubMed  Google Scholar 

  • Larson PF, Hudgson P, Walton JN (1969) Morphological relationship of polyribosomes and myosin filaments in developing and regenerating skeletal muscle. Nature 222:1168–1169

    Article  CAS  PubMed  Google Scholar 

  • Larson PF, Fulthorpe JJ, Hudgson P (1973) Alignment of polysomes along myosin filaments in developing myofibrils. J Anat 116:327–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarides E, Burridge K (1975) alpha-Actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6:289–298

    Article  CAS  PubMed  Google Scholar 

  • Levy DL, Heald R (2012) Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol 28:113–135

    Article  CAS  PubMed  Google Scholar 

  • Li S, Guo W, Schmitt BM, Greaser ML (2012) Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats. J Cell Biol 113:1265–1273

    CAS  Google Scholar 

  • Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ (2013) Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 24:3511–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ZX, Schultheiss T, Choi J, Holtzer S, Dilullo C, Fischman DA, Holtzer H (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division – evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29:1–19

    Article  CAS  PubMed  Google Scholar 

  • Littlefield R, Fowler VM (2002) Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys J 82:2548–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liversage AD, Holmes D, Knight PJ, Tskhovrebova L, Trinick J (2001) Titin and the sarcomere symmetry paradox. J Mol Biol 305:401–409

    Article  CAS  PubMed  Google Scholar 

  • Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ, Valpuesta JM (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402:693–696

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon P, Giovannelli A, Ragozzino D, Eusebi F, Ruzzier F (1997) Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur J Neurosci 9:800–808

    Google Scholar 

  • Lu MH, DiLullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, Fischman DA, Holtzer H (1992) The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R (2003) New N-RAP-binding partners α-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. J Cell Sci 116:2169–2178

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Herrera AH, Horowits R (1999) Molecular interactions of N-RAP, a nebulin-related protein of striated muscle myotendon junctions and intercalated disks. Biochemistry 38:6135–6143

    Article  CAS  PubMed  Google Scholar 

  • Makishima S, Komoriya K, Yamaguchi S, Aizawa S-I (2001) Length of the flagellar hook and the capacity of the Type III export apparatus. Science 291:2411–2413

    Article  CAS  PubMed  Google Scholar 

  • Manisastry SM, Zaal KJM, Horowits R (2009) Myofibril assembly visualized by imaging N-RAP, alpha-actinin, and actin in living cardiomyocytes. Exp Cell Res 315:2126–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manor U, Kachar B (2008) Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol 19:502–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardahl-Dumesnil M, Fowler VM (2001) Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J Cell Biol 155:1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE (2006) Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF (2002) Size control in dynamic organelles. Trends Cell Biol 12:414–419

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF (2015) How cells measure length on subcellular scales. Trends Cell Biol 25:760–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall WF, Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF, Qin HM, Brenni MR, Rosenbaum JL (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16:270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Natori R, Nonomura Y (1976) New elastic protein from muscle. Nature 262:58–60

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Matsuno A, Higuchi H, Shimaoka S, Kimura S, Shimizu T (1989) Behaviour of connectin (titin) and nebulin in skinned muscle fibres released after extreme stretch as revealed by immunoelectron microscopy. J Muscle Res Cell Motil 10:350–359

    Article  CAS  PubMed  Google Scholar 

  • Mastrototaro G, Liang X, Li X, Carullo P, Piroddi N, Tesi C, Gu Y, Dalton ND, Peterson KL, Poggesi C, Sheikh F, Chen J, Bang M-L (2015) Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovasc Res 107:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC (2001) The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 276:583–592

    Article  CAS  PubMed  Google Scholar 

  • McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC (2005) Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol 170:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Musa H, Gautel M, Peckham M (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. J Cell Sci 116:4811–4819

    Article  CAS  PubMed  Google Scholar 

  • Millevoi S, Trombitás K, Kolmerer B, Kostin S, Schaper J, Pelin K, Granzier H, Labeit S (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 282:111–123

    Google Scholar 

  • Miyahara M, Noda H (1980) Interaction of C-protein with myosin. J Biochem 87:1413–1420

    CAS  PubMed  Google Scholar 

  • Moncman CL, Wang K (1995) Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 32:205–225

    Article  CAS  PubMed  Google Scholar 

  • Moncman CL, Wang K (1996) Assembly of nebulin into the sarcomeres of avian skeletal muscle. Cell Motil Cytoskeleton 34:167–184

    Article  CAS  PubMed  Google Scholar 

  • Moos C, Offer G, Starr R, Bennett P (1975) Interaction of C-Protein with myosin, myosin rod and light meromyosin. J Mol Biol 97:1–9

    Article  CAS  PubMed  Google Scholar 

  • Moriya N, Minamino T, Hughes KT, Macnab RM, Namba K (2006) The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J Mol Biol 359:466–477

    Article  CAS  PubMed  Google Scholar 

  • Musa H, Meek S, Gautel M, Peddie D, Smith AJH, Peckham M (2006) Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci 119:4322–4331

    Article  CAS  PubMed  Google Scholar 

  • Myhre JL, Pilgrim DB (2012) At the start of the sarcomere: a previously unrecognized role for myosin chaperones and associated proteins during early myofibrillogenesis. Biochem Res Int 712315.doi:10.1155/2012/712315

    Google Scholar 

  • Myhre JL, Hills JA, Prill K, Wohlgemuth SL, Pilgrim DB (2014) The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Dev Biol 387:93–108

    Article  CAS  PubMed  Google Scholar 

  • Myklebust R, Sœtersdal TS, Engedal H, Ulstein M, Ødegården S (1978) Ultrastructural studies on the formation of myofilaments and myofibrils in the human embryonic and adult hypertrophied heart. Anat Embryol 152:127–140

    Article  CAS  PubMed  Google Scholar 

  • Nagandla H, Lopez S, Yu W, Rasmussen TL, Tucker HO, Schwartz RJ, Stewart MD (2016) Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol 410:86–97

    Article  CAS  PubMed  Google Scholar 

  • Nave R, Fürst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187

    Article  CAS  PubMed  Google Scholar 

  • Nwe TM, Maruyama K, Shimada Y (1999) Relation of nebulin and connectin (titin) to dynamics of actin in nascent myofibrils of cultured skeletal muscle cells. Exp Cell Res 252:33–40

    Article  CAS  PubMed  Google Scholar 

  • O’Brien EJ, Bennett PM, Hanson J (1971) Optical diffraction studies of myofibrillar structure. Philos Trans R Soc Lond B 261:201–208

    Article  Google Scholar 

  • Obinata T, Yamamoto M, Maruyama K (1966) The identification of randomly formed thin filaments in differentiating muscle cells of the chick embryo. Dev Biol 14:192–213

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Yanagisawa H, Kamiya R, Kikkawa M (2014) A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346:857–860

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Abe T, Yanagisawa H, Kikkawa M (2016) Docking-complex-independent alignment of Chlamydomonas outer dynein arms with 24-nm periodicity in vitro. J Cell Sci 129:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Ogut O, Hossain MM, Jin JP (2003) Interactions between nebulin-like motifs and thin filament regulatory proteins. J Biol Chem 278:3089–3097

    Article  CAS  PubMed  Google Scholar 

  • Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975

    Article  CAS  PubMed  Google Scholar 

  • Orfanos Z, Sparrow JC (2012) Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice. J Cell Sci 126:139–148

    Article  PubMed  CAS  Google Scholar 

  • Orfanos Z, Leonard K, Elliott C, Katzemich A, Bullard B, Sparrow J (2015) Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles. J Mol Biol 427:2151–2158

    Article  CAS  PubMed  Google Scholar 

  • Ottenheijm CAC, Knottnerus AM, Buck D, Luo X, Greer K, Hoying A, Labeit S, Granzier H (2009) Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys J 97:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owa M, Furuta A, Usukura J, Arisaka F, King SM, Witman GB, Kamiya R, Wakabayashi K (2014) Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci U S A 111:9461–9466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page SG, Huxley HE (1963) Filament lengths in striated muscle. J Cell Biol 19:369–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas CT, Krieg PA, Gregorio CC (2010) Nebulin regulates actin filament lengths by a stabilization mechanism. J Cell Biol 189:859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas CT, Bliss KT, Zieseniss A, Gregorio CC (2011) The nebulin family: an actin support group. Trends Cell Biol 21:29–37

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Pelham H (1985) Activation of heat-shock genes in eukaryotes. Trends Genet 1:31–35

    Article  CAS  Google Scholar 

  • Peng J, Raddatz K, Labeit S, Granzier H, Gotthardt M (2005) Muscle atrophy in titin M-line deficient mice. J Muscle Res Cell Motil 26:381–388

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Raddatz K, Molkentin JD, Wu Y, Labeit S, Granzier H, Gotthardt M (2007) Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115:743–751

    Article  CAS  PubMed  Google Scholar 

  • Pepe FA (1967) The myosin filament. I Structural organization from antibody staining observed in electron microscopy. J Mol Biol 37:203–225

    Article  Google Scholar 

  • Person V, Kostin S, Suzuki K, Labeit S, Schaper J (2000) Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci 113:3851–3859

    CAS  PubMed  Google Scholar 

  • Pfuhl M, Winder SJ, Pastore A (1994) Nebulin, a helical actin-binding protein. EMBO J 13:1782–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierobon-Bormioli S, Betto R, Salviati G (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil 10:446–456

    Article  CAS  PubMed  Google Scholar 

  • Pinset-Härström I (1985) MgATP specifically controls in vitro self-assembly of vertebrate skeletal myosin in the physiological pH range. J Mol Biol 182:159–172

    Article  PubMed  Google Scholar 

  • Pizon V, Iakovenko A, van der Ven PFM, Kelly R, Fatu C, Fürst DO, Karsenti E, Gautel M (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115:4469–4482

    Article  CAS  PubMed  Google Scholar 

  • Pizon V, Gerbal F, Diaz CC, Karsenti E (2005) Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation. EMBO J 24:3781–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokrzywa W, Hoppe T (2013) Chaperoning myosin assembly in muscle formation and aging. Worm 2(3):e25644. doi:10.4161/worm.25644

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandran I, Terry M, Ferrari MB (2003) Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis. Cell Motil Cytoskeleton 55:61–72

    Article  CAS  PubMed  Google Scholar 

  • Reedy MC, Beall C (1993) Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev Biol 160:443–465

    Article  CAS  PubMed  Google Scholar 

  • Reedy MC, Bullard B, Vigoreaux JO (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 151:1483–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisler E, Smith C, Seegan G (1980) Myosin mini-filaments. J Mol Biol 143:129–145

    Article  CAS  PubMed  Google Scholar 

  • Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Ringkob TP, Swartz DR, Greaser ML (2004) Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils. J Anim Sci 82:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Robinson TF, Winegrad S (1977) Variation of thin filament length in heart muscle. Nature 267:74–75

    Article  CAS  PubMed  Google Scholar 

  • Robinson TF, Winegrad S (1979) The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol 286:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy DE, Yatskievych TA, Antin PB, Gregorio CC (2001) Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev Dyn 221:61–71

    Article  CAS  PubMed  Google Scholar 

  • Russel B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. Am J Physiol 262:C1–C8

    Google Scholar 

  • Russel B, Wenderoth MP, Goldspink PH (1992) Remodeling of myofibrils: subcellular distribution of myosin heavy chain mRNA and protein. Am J Physiol 262:R339–R345

    Google Scholar 

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol 289:H2291–H2301

    Google Scholar 

  • Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2005) How to build a myofibril. J Muscle Res Cell Motil 26:343–354

    Article  PubMed  Google Scholar 

  • Sanger JW, Wang J, Fan Y, White J, Sanger JM (2010) Assembly and dynamics of myofibrils. J Biomed Biotech 2010:858606. doi:10.1155/2010/858606

    Article  CAS  Google Scholar 

  • Schaart G, Viebahn C, Langmann W, Ramaekers F (1989) Desmin and titin expression in early postimplantation mouse embryos. Development 107:585–596

    CAS  PubMed  Google Scholar 

  • Schultheiss T, Lin Z, Lu MH, Murray J, Fischman DA, Weber K, Masaki T, Imamura M, Holtzer H (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100:238–245

    Article  CAS  PubMed  Google Scholar 

  • Shih CL, Chen MJG, Linse K, Wang K (1997) Molecular contacts between nebulin and actin: cross-linking of nebulin modules to the N-terminus of actin. Biochemist 36:1814–1825

    Article  CAS  Google Scholar 

  • Shimada Y, Fischman DA, Moscona AA (1967) The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J Cell Biol 35:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöström M, Squire JM (1977) Fine structure of the A-band in cryo-sections: the structure of the A-band of human skeletal muscle fibres from ultra-thin cryo-sections negatively stained. J Mol Biol 109:49–68

    Article  PubMed  Google Scholar 

  • Smith DA, Carland CR, Guo Y, Bernstein SI (2014) Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec 297:1637–1649

    Article  CAS  Google Scholar 

  • Soeno Y, Shimada Y, Obinata T (1999) BDM (2,3-butanedione monoxime), an inhibitor of myosin-actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. Cell Tissue Res 295:307–316

    Article  CAS  PubMed  Google Scholar 

  • Sœtersdal T, Engedal H, Lie R, Myklebust R (1980) On the origin of Z-band material and myofilaments in myoblasts from the human atrial wall. Cell Tissue Res 207:21–29

    Google Scholar 

  • Song L, Dentler WL (2001) Flagellar protein dynamics in Chlamydomonas. J Biol Chem 276:29754–29763

    Article  CAS  PubMed  Google Scholar 

  • Sonoda M, Kimura S, Moriya H, Shimada Y, Maruyama K (1990) Molecular shape of alpha-connectin, an elastic filamentous protein of skeletal muscle. Proc Jpn Acad Ser B 66:213–216

    Article  CAS  Google Scholar 

  • Sosnicki AA, Loesser KE, Rome LC (1991) Myofilament overlap in swimming carp. I. Myofilament lengths of red and white muscle. Am J Physiol 260:C283–C288

    Google Scholar 

  • Soteriou A, Gamage M, Trinick J (1993) A survey of interactions made by the giant protein titin. J Cell Sci 104:119–123

    CAS  PubMed  Google Scholar 

  • Sparrow JC, Schöck F (2009) The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 10:293–298

    Article  CAS  PubMed  Google Scholar 

  • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro D, Sonnenblick EH (1964) Comparison of the ultrastructural basis of the contractile process in heart and skeletal muscle. Circ Res 15:14–37

    CAS  Google Scholar 

  • Spitzer NC (1994) Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. TINS 17:115–118

    CAS  PubMed  Google Scholar 

  • Spotnitz HM, Sonnenblick EH, Spiro D (1966) Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res 18:49–66

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Roessle M, Knupp C (2004) New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band. J Mol Biol 343:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Srikakulam R, Liu L, Winkelmann DA (2008) Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 3(5):e2137. doi:10.1371/journal.pone.0002137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176:819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X, Rotllant J, Li H, DeDeyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103:2713–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilney LG, Tilney MS, DeRosier DJ (1992) Actin filaments, sterocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8:257–274

    Article  CAS  PubMed  Google Scholar 

  • Tokuyasu KT, Maher PA (1987a) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–2793

    Article  CAS  PubMed  Google Scholar 

  • Tokuyasu KT, Maher PA (1987b) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos.II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801

    Article  CAS  PubMed  Google Scholar 

  • Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A (2009) Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell Motil Cytoskeleton 66:798–815

    Article  CAS  PubMed  Google Scholar 

  • Tonino P, Pappas CT, Hudson BD, Labeit S, Gregorio CC, Granzier H (2010) Reduced myofibrillar connectivity and increased Z-disk width in nebulin-deficient skeletal muscle. J Cell Sci 123:384–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traeger L, Goldstein MA (1983) Thin filaments are not of uniform length in rat skeletal muscle. J Cell Biol 96:100–103

    Article  CAS  PubMed  Google Scholar 

  • Trinick J (1992) Molecular rulers in muscle? Curr Biol 2:75–77

    Article  CAS  PubMed  Google Scholar 

  • Trinick J, Cooper J (1980) Sequential disassembly of vertebrate muscle thick filaments. J Mol Biol 141:315–321

    Article  CAS  PubMed  Google Scholar 

  • Trinick J, Knight P, Whiting A (1984) Purification and properties of native titin. J Mol Biol 180:331–356

    Article  CAS  PubMed  Google Scholar 

  • Trombitás K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79:3226–3234

    Article  PubMed  PubMed Central  Google Scholar 

  • Trombitás K, Wu Y, Labeit D, Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol 281:H1793–H1799

    Google Scholar 

  • Tskhovrebova L, Trinick J (2001) Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J Mol Biol 310:755–771

    Article  CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J (2003) Titin: Properties and family relationship. Nat Rev Mol Cell Biol 4:679–689

    Article  CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Walker ML, Grossmann JG, Khan GN, Baron A, Trinick J (2010) Shape and flexibility in the titin 11-domain super-repeat. J Mol Biol 397:1092–1105

    Article  CAS  PubMed  Google Scholar 

  • Tu MK, Levin JB, Hamilton AM, Borodinsky LN (2016) Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 59:91–97

    Article  CAS  PubMed  Google Scholar 

  • Tuxhorn J, Daise T, Dentler WL (1998) Regulation of flagellar length in Chlamydomonas. Cell Motil Cytoskeleton 40:133–146

    Article  CAS  PubMed  Google Scholar 

  • van der Loop FTL, Schaart G, Langmann W, Ramaekers FCS, Viebahn C (1992) Expression and organization of muscle specific proteins during the early developmental stages of the rabbit heart. Anat Embryol 185:439–450

    Article  PubMed  Google Scholar 

  • van der Loop FTL, van Eys GJJ, Schaart G, Ramaekers FCS (1996a) Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Muscle Res Cell Motil 17:23–36

    Article  PubMed  Google Scholar 

  • van der Loop FTL, van der Ven PFM, Fürst DO, Gautel M, van Eys GJJ, Ramaekers FCS (1996b) Integration of titin into sarcomeres of cultured differentiating human skeletal muscle cells. Eur J Cell Biol 69:301–307

    PubMed  Google Scholar 

  • van der Ven PFM, Ehler E, Perriard J-C, Fürst DO (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J Muscle Res Cell Motil 20:569–579

    Article  PubMed  Google Scholar 

  • van der Ven PFM, Bartsch JW, Gautel M, Jockusch H, Fürst DO (2000) A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 113:1405–1414

    PubMed  Google Scholar 

  • Vigoreaux JO, Saide JD, Valgeirsdottir K, Pardue ML (1993) Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol 121:587–598

    Article  CAS  PubMed  Google Scholar 

  • Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochim Biophys Acta/Mol Cell Res 1833:812–822

    Article  CAS  Google Scholar 

  • Walker SM, Schrodt GR (1974) I Segment lengths and thin fi1ament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec 178:63–81

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Williamson CL (1980) Identification of an N2 line protein of striated muscle. Proc Natl Acad Sci U S A 77:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z Line. J Cell Biol 107:2199–2212

    Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A 76:3698–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Ramirez-Mitchell R, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci U S A 81:3685–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-M, Greaser ML, Schultz E, Bulinski JC, Lin JJ-C, Lessard JL (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 107:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci U S A 88:7101–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Knipfer M, Huang Q-Q, van Heerden A, Hsu LC-L, Gutierrez G, Quian X-L, Stedman H (1996) Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J Biol Chem 271:4304–4314

    Article  CAS  PubMed  Google Scholar 

  • Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Pennise CR, Babcock GG, Fowler VM (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Wee DH, Hughes KT (2015) Molecular ruler determines needle length for the Salmonella Spi-1 injectisome. Proc Natl Acad Sci U S A 112:4098–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert S, Bergmann N, Luo X, Erdmann B, Gotthardt M (2006) M line–deficient titin causes cardiac lethality through impaired maturation of the sarcomere. J Cell Biol 173:559–570

    Google Scholar 

  • Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268

    Google Scholar 

  • Wilson NF, Lefebvre PA (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson NF, Iyer JK, Buchheim JA, Meek W (2008) Regulation of flagellar length in Chlamydomonas. Semin Cell Dev Biol 19:494–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 303:483–492

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Huang Q-Q, Wang K (1993) Nebulin is a full-length template of actin filaments in the skeletal muscle sarcomere: an immunoelectron microscopic study of its orientation and span with site-specific monoclonal antibodies. J Muscle Res Cell Motil 14:476–483

    Google Scholar 

  • Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fischman MC (2002) Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 30:205–209

    CAS  PubMed  Google Scholar 

  • Xu J, Hendrix RW, Duda RL (2014) Chaperone–protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. J Mol Biol 426:1004–1018

    Article  CAS  PubMed  Google Scholar 

  • Yadavalli VK, Forbes JG, Wang K (2009) Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. Langmuir 25:7496–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM (2012) Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton 69:337–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Shih YH, Xu X (2014) Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec/Adv Integr Evol Biol 297:1681–1693

    Article  CAS  Google Scholar 

  • Yasuda K, Fujita H, Fujiki Y, Ishiwata S (1994) Length regulation of thin filaments without nebulin. Proc Japan Acad Ser B/Phys Biol Sci 70:151–156

    Article  CAS  Google Scholar 

  • Zhang JQ, Luo G, Herrera AH, Paterson B, Horowits R (1996) cDNA cloning of mouse nebulin: evidence that the nebulin-coding sequence is highly conserved among vertebrates. Eur J Biochem 239:835–841

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi ME, Woodhead JL, Moss RL, Craig R (2008) Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 105:2386–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Trinick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tskhovrebova, L., Trinick, J. (2017). Titin and Nebulin in Thick and Thin Filament Length Regulation. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_10

Download citation

Publish with us

Policies and ethics