Skip to main content

The Genome-Wide Association Study

  • Chapter
  • First Online:
The Jatropha Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Jatropha (Jatropha curcas L.) is a promising biofuel producer for supporting the fight against global warming and has thus attracted the attention in recent years. However, as yet, we do not have a deep and comprehensive understanding of this species. Genome-wide association studies (GWASs) have been used to improve our understanding of various plant species. Therefore, it has been suggested that a GWAS on jatropha may help to identify several quantitative trait loci or candidate genes. Such a study would require the correct selection of material, specific simple sequence repeat markers, and a single nucleotide polymorphism array designed from the published whole jatropha genome and transcriptome sequences, as well as trait data collection and statistical model selection. It would provide a comprehensive reference and a scientific basis for jatropha breeding, particularly those with the high and stable oil yield and improved stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149(2):749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bac-Molenaar JA, Fradin EF, Becker FF, Rienstra JA, van der Schoot J, Vreugdenhil D, Keurentjes JJ (2015) Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell 27:1857–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Corke H, Sun M (2002) Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet 105:898–905

    Article  CAS  PubMed  Google Scholar 

  • Basha SD, Franis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823

    Article  CAS  Google Scholar 

  • Bellucci A, Torp AM, Bruun S, Magid J, Andersen SB, Rasmussen SK (2015) Association mapping in scandinavian winter wheat for yield, plant height, and traits important for second-generation bioethanol production. Front Plant Sci 6:1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità, Pubblicazioni del R. Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    Google Scholar 

  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132(2):718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho CR, Clarindo WR, Praca MM, Araujo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Article  CAS  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. American Naturalist 142:S78–S92

    Article  Google Scholar 

  • Chikara J, Jaworsky G (2007) The little shrub that could—maybe. Nature 449:652–655

    Article  Google Scholar 

  • Ci D, Song Y, Du Q, Tian M, Han S, Zhang D (2015) Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits. J Exp Bot 67(3):723–737

    Article  PubMed  Google Scholar 

  • Clarke JH, Mithen R, Brown JK, Dean C (1995) QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet 248(3):278–286

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Goze E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a Japonica rice panel. PLoS ONE 8:e78037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias LAS, Missio RF, Dias DCFS (2012) Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genet Mol Res 11:2719–2728

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Cordts S, Heuer S, Sauter M, Lorz H et al (1999) Novel ribosomal genes from maize are differentially expressed in the zygotic and somatic cell cycles. Mol Gen Genet 261:416–427

    Article  CAS  PubMed  Google Scholar 

  • Gairola KC, Nautiyal AR, Sharma G, Dwivedi AK (2011) Variability in seed characteristics of Jatropha curcas Linn. from hill region of Uttarakhand. Bull Environ Pharmacol Life Sci 1:64–69

    Google Scholar 

  • Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Kulwal KL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147

    CAS  PubMed  Google Scholar 

  • Hansen M, Kraft T, Ganestam S, Säll T, Nilsson NO (2001) Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res 77(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30(8):798–802

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130

    Article  CAS  Google Scholar 

  • James C (2011) ISAAA Brief 43, Global status of commercialized biotech/GM crops: 2011. ISAAA Briefs. ISAAA, Ithaca

    Google Scholar 

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor Appl Genet 128:1999–2017

    Article  CAS  PubMed  Google Scholar 

  • Khemkladngoen N, Cartagena J, Fukui K (2011a) Physical wounding-assisted Agrobacterium-mediated transformation for juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. Plant Biotechnol Rep 5:235–243

    Article  Google Scholar 

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011b) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH (2014) Gene silencing of sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • King AJ, Montes LR, Clarke JG, Affleck J, Li Y et al (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11:986–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AJ, Montes LR, Clarke JG, Itzep J, Perez CA et al (2015) Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnol Biofuels 8:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet 245(5):548–555

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Anand KGV, Pamidimarri DVNS, Sarkar T, Reddy MP et al (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32:41–47

    Article  CAS  Google Scholar 

  • Kumar V, Singh A, Mithra SV, Krishnamurthy SL, Parida SK et al (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W et al (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Organ Cult 92:173–181

    Article  CAS  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS ONE 8:e83056

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SR, Li WY, Long D, Hu CG, Zhang JZ (2013) Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. PLoS ONE 8:e75149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Q, Chen L, Mei H, Wei H, Feng F et al (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z et al (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107(45):19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra A, Khan K, Niranjan A, Nath P, Sane VA (2013) Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry 96:37–45

    Article  CAS  PubMed  Google Scholar 

  • Montes Osorio LR, Torres Salvador AF, Jongschaap RE, Azurdia Perez CA, Berduo Sandoval JE et al (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison GD, Linder CR (2014) Association mapping of germination traits in Arabidopsis thaliana under light and nutrient treatments: searching for G × E effects. G3 (Bethesda) 4:1465–1478

    Article  CAS  Google Scholar 

  • Nair D, Maria TSW, Luiz ASD (2009) Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed Appl Biotechnol 9:386–389

    Article  Google Scholar 

  • Niu GH, Rodriguez D, Mendoza M, Jifon J, Ganjegunte G (2012) Responses of Jatropha curcas to salt and drought stresses. Int J Agron. doi:10.1155/2012/632026

    Google Scholar 

  • Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9:6477–6481

    CAS  Google Scholar 

  • Pecina-Quintero V, Anaya-Lopeza JL, Zamarripa-Colmenero A, Montes-Garcia N, Nunez-Colina CA et al (2011) Molecular characterisation of Jatropha curcas L. genetic resources from Chiapas, Mexico through AFLP markers. Biomass Bioenergy 35:1897–1905

    Article  CAS  Google Scholar 

  • Pecina-Quintero V, Anaya-Lopeza JL, Zamarripa-Colmenero A, Nunez-Colina CA, Montes-Garcia N et al (2014) Genetic structure of Jatropha curcas L. in Mexico and probable center of origin. Biomass Bioenergy 60:147–155

    Article  CAS  Google Scholar 

  • Qiu LJ, Cao YS, Chang RZ, Zhou XA, Wang GX et al (2003) Establishment of Chinese soybean (G. max) core collection: sampling strategy. Sci Agric Sin 36:1442–1449

    Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Chauhan RS (2012) Identification and association analysis of castor bean orthologous candidate gene-based markers for high oil content in Jatropha curcas. Plant Mol Biol Rep 30:1025–1031

    Article  CAS  Google Scholar 

  • Song XE, Li YH, Chang RZ, Guo PY, Qiu LJ (2010) Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L.) Merr.) in China. Sci Agric Sin 43:2209–2219

    Google Scholar 

  • Stich B, Melchinger AE, Piepho HP, Heckenberger M, Maurer HP, Reif JC (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130

    Article  PubMed  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium–mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Liu P, Ye J, Lo LC, Cao S et al (2012) An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q et al (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS ONE 10(10):e0141339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T et al (2012) Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnol 29:137–143

    Article  CAS  Google Scholar 

  • Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91

    Article  CAS  Google Scholar 

  • Wang C, Yang Y, Yuan X, Xu Q, Feng Y et al (2014) Genome-wide association study of blast resistance in indica rice. BMC Plant Biol 14:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Liu P, Yi C, Gu K, Sun F et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS ONE 6:e23632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Han H, Yan J, Chen F, Wei W (2015a) A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Appl Biochem Biotechnol 176(2):582–597

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jia MH, Ghai P, Lee FN, Jia Y (2015b) Genome-wide association of rice blast disease resistance and yield-related components of rice. Mol Plant Microbe Interact 28(12):1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhang S, Zhang L, Chen Y, Li M et al (2013) Functional characterization of two microsomal fatty acid desaturases from Jatropha curcas L. J Plant Physiol 170(15):1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhou C, Cheng S, Wu Z, Lu W et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821

    Article  CAS  PubMed  Google Scholar 

  • Wu PZ, Li J, Wei Q, Zeng L, Chen YP et al (2009) Cloning and functional characterization of an acyl–acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas. Tree Physiol 29(10):1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Guo Z, Huang C, Wang K, Jiang N et al (2015) Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. J Exp Bot 66(18):5605–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi VI, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yue GH, Lo LC, Sun F, Cao SY, Yi CX et al (2014) No variation at 29 microsatellites in the genome of Jatropha curcas. J Genom 2:59–63

    Article  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Jiang GL (2015a) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129(1):117–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Nelson RL, Wang X et al (2015b) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom 16:217

    Article  CAS  Google Scholar 

  • Zhang J, Zhao J, Xu Y, Liang J, Chang P et al (2015c) Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front Plant Sci 6:1042

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Guo X, Liu B, Tang L, Chen F (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10:2825–2832

    Article  CAS  Google Scholar 

  • Zhu Q, Ge D, Maia JM, Zhu M, Petrovski S et al (2011) A genome-wide comparison of the functional properties of rare and common genetic variants in humans. Am J Hum Genet 88(4):458–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Plant Bioengineering for Bioenergy Laboratory was supported by Corporate Social Responsibility (CSR) Foundation of the Sumitomo Electric Industries (SEI), Ltd. This work was conducted and funded in part under the Joint Research Program of the Arid Land Research Center, Tottori University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suguru Tsuchimoto or Kiichi Fukui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Tsuchimoto, S., Harada, K., Fukui, K. (2017). The Genome-Wide Association Study. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_10

Download citation

Publish with us

Policies and ethics