Skip to main content

Pyrolysis in Closed Systems

  • Chapter
  • First Online:
Global Chemical Kinetics of Fossil Fuels

Abstract

The reactions of coal and sapropelic kerogen in a closed system are reviewed. A range of chemical kinetic models that include primary and secondary reactions are described, including compositional models of vitrinite reflectance . Again, the primary hydrocarbon generation reactions are consistent with activation energies in the 50–56 kcal/mol range. Diverse published values from hydrous pyrolysis are shown to be caused by inadequate separation of transport and distributed reactivity effects. Oil composition fractionation from hydrous pyrolysis is shown to be similar to that in semi-open pyrolysis. Effects of hydrogen and hydrogen donors are also discussed, including kinetics for coal liquefaction and oil shale thermal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Understanding a little optics is helpful to understand the basis of Vitrimat. Light is reflected from a surface in proportion to the ratio of refractive indices in the incident and reflecting material. The refractive index is related to off-resonance interactions with electrons in the reflective media, and absorbance is related to on-resonance interactions with same. This physics is captured in the Fresnel-Beer equation. Aromatic materials have a higher refractive index due to more interaction with the light, so reflectance increases with maturity of residual organic matter. Reflectance also depends on the polarization of incident light, which is why polarized sun glasses work so well on light reflected from water.

References

  1. B. Horsfield, F. Leistner, K. Hall, Microscale sealed vessel pyrolysis, in Principles and Practice of Analytical Techniques in Geosciences, RSC Detection Science Series No. 4, ed. by K. Grice, (The Royal Society of Chemistry, 2015), pp. 209–250

    Google Scholar 

  2. M.D. Lewan, Evaluation of petroleum generation by hydrous pyrolysis. Phil Trans. Roy. Soc. Lond. A315, 123–134 (1985)

    Article  Google Scholar 

  3. D.W. van Krevelen, Coal. Typology-Chemistry-Physics-Constitution, Elsevier, 1961, pp. 120–126

    Google Scholar 

  4. D.W. van Krevelen, Coal—Topology, Chemistry, Physics, Constitution, Chap. 5, (Elsevier, 1993), pp. 158–164, 837–844

    Google Scholar 

  5. P.G. Hatcher, H.E. Lerch III, T.V. Verheyen, Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal. Int. J. Coal Geol. 16, 193–196 (1990)

    Article  Google Scholar 

  6. M. Monthioux, P. Landais, J.-C. Monin, Comparison between natural and artificial maturation series of humic coals from the Mahakam Delta, Indonesia. Org. Geochem. 8, 275–292 (1985)

    Article  Google Scholar 

  7. P. Landais, M. Monthioux, B. Poty, Simulation of natural coalification by high-pressure pyrolysis. Int. J. Coal Geol. 13, 99–126 (1989)

    Article  Google Scholar 

  8. P. Landais, R. Michels, M. Elie, Are time and temperature the only constraints to the simulation of organic matter maturation? Org. Geochem. 22, 617–630 (1994)

    Article  Google Scholar 

  9. R. Michels, P. Landais, Artificial coalification: comparison of confined pyrolysis and hydrous pyrolysis. Fuel 73, 1691–1696 (1994)

    Article  Google Scholar 

  10. L. Mansuy, P. Landais, O. Ruau, Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis. 1. Hydrocarbons and polar compounds. Energy Fuels 9, 691–703 (1995)

    Article  Google Scholar 

  11. L. Mansuy, P. Landais, Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis. 2. Water and polar compounds. Energy Fuels 9, 809–821 (1995)

    Article  Google Scholar 

  12. P. Landais, L. Gerard, Coalification stages from confined pyrolysis of an immature humic coal. Int. J. Coal Geol. 30, 285–301 (1996)

    Article  Google Scholar 

  13. D.W. van Krevelen, Coal—Topology, Chemistry, Physics, Constitution, Chap. 23, (Elsevier, 1993), pp. 699–701

    Google Scholar 

  14. M. Monthioux, Expected mechanisms in nature and in confined-system pyrolysis. Fuel 67, 843–847 (1988)

    Article  Google Scholar 

  15. J.D. Saxby, A.J.R. Bennett, J.F. Corcoran, D.E. Lambert, K.W. Riley, Petroleum generation: Simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin. Org. Geochem. 9, 69–81 (1986)

    Article  Google Scholar 

  16. A.K. Burnham, J.J. Sweeney, A chemical reaction model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 53, 2649–2657 (1989)

    Article  Google Scholar 

  17. F. Behar, M. Vandenbroucke, S.C. Teermann, P.G. Hatcher, C. Leblond, O. Lerat, Experimental simulation of gas generation from coals and kerogen. Chem. Geol. 126, 247–260 (1995)

    Article  Google Scholar 

  18. F. Behar, M.D. Lewan, F. Lorant, M. Vandenbroucke, Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org. Geochem. 34, 575–600 (2003)

    Article  Google Scholar 

  19. J.T. Senftle, S.R. Larter, B.W. Bromley, J.H. Brown, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org. Geochem. 9, 345–350 (1986)

    Article  Google Scholar 

  20. W.-L. Huang, Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Org. Geochem. 24, 233–241 (1996)

    Article  Google Scholar 

  21. M. Dalla Torre, R.F. Mählmann, W.G. Ernst, Experimental study on the pressure dependence of vitrinite maturation. Geochim. Cosmochim. Acta 61, 2921–2928 (1997)

    Article  Google Scholar 

  22. N. Piedad-Sanchez, L. Martinez, A. Izart, I. Suarez-Ruiz, M. Elie, C. Menetrier, Artificial maturation of a high-volatile bituminous coal from Asturias (NW Spain) in a confined pyrolysis system. Part I. Petrographic, geochemical and molecular studies. J. Anal. Appl. Pyrol. 74, 61–76 (2005)

    Article  Google Scholar 

  23. R. Li, K. Jin, D.J. Lehrmann, Hydrocarbon potential of Pennsylvanian coal in Bohai Gulf Basin, Eastern China, as revealed by hydrous pyrolysis. Int. J. Coal Geol. 73, 88–97 (2008)

    Article  Google Scholar 

  24. R. Le Bayon, G.P. Brey, W.G. Ernst, R.F. Mählmann, Experimental study of organic matter maturation: time and pressure effects on vitrinite reflectance at 400 °C. Org. Geochem. 42, 340–355 (2011)

    Article  Google Scholar 

  25. C.N. Uguna, A.D. Carr, C.E. Snape, W. Meredith, M. Castro-Diaz, A laboratory pyrolysis study to investigate the effect of water pressure on hydrocarbon generation and maturation of coals in geological basins. Org. Geochem. 52, 103–113 (2012)

    Article  Google Scholar 

  26. C.N. Uguna, M.H. Azri, C.E. Snape, W. Meredith, A.D. Carr, A hydrous pyrolysis study to ascertain how gas yields and the extent of maturation for a partially matured source rock and bitumen in isolation compared to their whole source rock. J. Anal. Appl. Pyrol. 103, 268–277 (2013)

    Article  Google Scholar 

  27. C.N. Uguna, A.D. Carr, C.E. Snape, W. Meredith, High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions. Org. Geochem. 78, 44–51 (2015)

    Article  Google Scholar 

  28. A.L.D. Spigolon, M.D. Lewan, H.L. de Barros Penteado, L.F.C. Coutinho, Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: a case study using a Brazilian source rock with Type I kerogen. Org. Geochem. 83–84, 27–53 (2015)

    Article  Google Scholar 

  29. J.J. Sweeney, A.K. Burnham, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990)

    Google Scholar 

  30. A.K. Burnham, Vitrimat2: A Modified Model of Vitrinite Maturation and Reflectance, (Lawrence Livermore National Laboratory Rept. UCID-219313, 1992), p. 10

    Google Scholar 

  31. A.K. Burnham, J.J. Sweeney, R.L. Braun, Development of Kinetic Models for Vitrinite Reflectance, (Lawrence Livermore National Laboratory Rept. UCRL-PRES-206527, 2004), p. 112 

    Google Scholar 

  32. N. Suzuki, H. Matsubayashi, D.W. Waples, A simpler kinetic model of vitrinite reflectance. AAPG Bulletin 77, 1502–1508 (1993)

    Google Scholar 

  33. C.E. Barker, M.D. Lewan, M.J. Pawlewicz, The influence of extractable organic matter on vitrinite reflectance suppression: a survey of kerogen and coal types. Int. J. Coal Geol. 70, 67–78 (2007)

    Article  Google Scholar 

  34. A.D. Carr, A vitrinite reflectance kinetic model incorporating overpressure retardation. Mar. Petrol. Geol. 16, 355–377 (1999)

    Article  Google Scholar 

  35. L.C. Price, C.E. Barker, Suppression of vitrinite reflectance in amorphous rich kerogen—a major unrecognized problem. J. Petr. Geol. 8, 59–84 (1985)

    Article  Google Scholar 

  36. S.B. Nielsen, O.R. Clausen, E. McGregor, Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data, Basin Res., published on line (2015)

    Google Scholar 

  37. J.R. Smith, J.W. Smith, A relationship between the carbon and hydrogen content of coals and their vitrinite reflectance. Int. J. Coal Geol. 70, 79–86 (2007)

    Article  Google Scholar 

  38. F. Behar, M. Vandenbroucke, Y. Tang, F. Marquis, J. Espitalié, Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oils and gas generation. Org. Geochem. 26, 321–339 (1997)

    Article  Google Scholar 

  39. F. Behar, F. Lorant, M. Lewan, Role of NSO compounds during primary cracking of a Type II kerogen and Type III lignite. Org. Geochem. 39, 1–22 (2008)

    Article  Google Scholar 

  40. A.K. Burnham, J.J. Sweeney, Reply to comments by S. B. Nielsen and T. Barth on ‘A chemical kinetic model of vitrinite maturation and reflectance’. Geochim. Cosmochim. Acta 55, 643–644 (1991)

    Article  Google Scholar 

  41. A.K. Burnham, A.M. Samoun, J.G. Reynolds, Characterization of petroleum source rocks by pyrolysis-mass spectrometry gas evolution profiles, (Lawrence Livermore National Laboratory Rept. UCRL-ID-111012, 1991), p. 32

    Google Scholar 

  42. J.G. Reynolds, A.K. Burnham, Pyrolysis kinetics and maturation of coals from the San Juan Basin. Energy Fuels 7, 610–619 (1993)

    Article  Google Scholar 

  43. A.K. Burnham, B.J. Schmidt, R.L. Braun, A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 23, 931–939 (1995)

    Article  Google Scholar 

  44. H.J. Schenk, B. Horsfield, Using natural maturation series to evaluate the utility of parallel reaction kinetics models: an investigation of Toarcian shales and Carboniferous coals, Germany. Org. Geochem. 29, 137–154 (1998)

    Article  Google Scholar 

  45. V. Dieckmann, R. Ondrak, B. Cramer, B. Horsfield, Deep basin gas: new insights from kinetic modelling and isotopic fractionation in deep-formed gas precursors. Mar. Petrol. Geol. 23, 183–199 (2006)

    Article  Google Scholar 

  46. M. Erdmann, B. Horsfield, Enhanced late gas generation potential of petroleum source rocks via recombination reactions: evidence from the Norwegian North Sea. Geochim. Cosmochim. Acta 70, 3943–3956 (2006)

    Article  Google Scholar 

  47. J. Whelan, R.M. Carangelo, P.R. Solomon, W.G. Dow, TG/Plus—a pyrolysis method for following maturation of oil and gas generation zones using Tmax of methane. Org. Geochem. 16, 1187–1202 (1989)

    Article  Google Scholar 

  48. A.K. Burnham, R.L. Braun, Global kinetic analysis of complex materials. Energy Fuels 13, 1–22 (1999)

    Article  Google Scholar 

  49. B. Tissot, B. Durand, J. Espitalié, A. Combaz, Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull. 58, 499–506 (1974)

    Google Scholar 

  50. J.J. Sweeney, A.K. Burnham, R.L. Braun, A model of hydrocarbon generation from Type I kerogen: application to Uinta Basin. Utah, AAPG Bull. 71, 967–985 (1987)

    Google Scholar 

  51. B. Tissot, J. Espitalié, L’evolution thermique de la matiere organique des sediments: applications d’une simulation mathematique potential petrolier des bassins sedimentaires et reconstitution de l’history des sediments. Rev. Inst. Français Pétrole 30, 743–777 (1975)

    Article  Google Scholar 

  52. M.D. Lewan, J.C. Winters, J.H. McDonald, Generation of oil-like pyrolysates from organic-rich shales. Science 203, 879–899 (1979)

    Article  Google Scholar 

  53. J.C. Winters, J.A. Williams, M.D. Lewan, A laboratory study of petroleum generation by hydrous pyrolysis (Wiley, In Advances in Organic Geochemistry, 1981), pp. 524–533

    Google Scholar 

  54. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)

    Article  Google Scholar 

  55. R.J. Evans, G.T. Felbeck Jr., High-temperature simulation of petroleum formation—I. The pyrolysis of Green River shale. Org. Geochem. 4, 135–144 (1983)

    Article  Google Scholar 

  56. J.D. Saxby, K.W. Riley, Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature 308, 177–179 (1984)

    Article  Google Scholar 

  57. B.J. Huizinga, Z.A. Aizenshtat, K.E. Peters, Programmed pyrolysis chromatograph of artificially matured Green River kerogen. Energy Fuels 2, 74–81 (1988)

    Article  Google Scholar 

  58. T.E. Ruble, M.D. Lewan, R.P. Philp, New insights on the Green River petroleum system in the Uinta Basin from hydrous pyrolysis. AAPG Bull. 85, 1333–1371 (2001)

    Google Scholar 

  59. W.F. Johnson, D.K. Walton, H.H. Keller, E.J. Crouch, In situ retorting of oil shale rubble: a model of heat transfer and product formation in oil shale particles. Colo. Sch. Mines Quart. 70, 237–272 (1975)

    Google Scholar 

  60. A.K. Burnham, A.E. Pomerantz, F. Gelin, Oil, bitumen, and other confusing concepts: what do laboratory experiments really tell us? AAPG Hedberg Conference, Santa Barbara, CA, April 3–6, 2016

    Google Scholar 

  61. F. Behar, S. Roy, D. Jarvie, Artificial maturation of a Type I kerogen in closed system: mass balance and kinetic modeling. Org. Geochem. 41, 1235–1247 (2010)

    Article  Google Scholar 

  62. D.J. Curry, New insights on the Green River petroleum system from hydrous pyrolysis experiments: discussion. AAPG Bull. 87, 1531–1534 (2003)

    Article  Google Scholar 

  63. E.W. Tegelaar, R.A. Noble, Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org. Geochem. 22, 543–574 (1994)

    Article  Google Scholar 

  64. M.D. Lewan, T.E. Ruble, Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem. 33, 1457–1475 (2002)

    Article  Google Scholar 

  65. A.B. Hubbard, W.E. Robinson, A Thermal Decomposition Study of Colorado Oil Shale, U.S. Bureau of Mines Rept. Inv. 4744, U.S. Dept. Interior, 1950

    Google Scholar 

  66. M.D. Lewan, Reply to the comment by A. K. Burnham on ‘Experiments on the role of water in petroleum formation’, Geochem. Cosmochim. Acta 62, 2211–2216 (1998)

    Google Scholar 

  67. J.J. Sweeney, R.L. Braun, A.K. Burnham, S. Talukdar, C. Vallejos, Chemical kinetic model of hydrocarbon generation, expulsion, and destruction applied to the Maracaibo Basin. Venezuela, AAPG Bull. 79, 1515–1532 (1995)

    Google Scholar 

  68. F.P. Miknis, T.F. Turner, G.L. Berdan, P.J. Conn, Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales. Energy Fuels 1, 477–483 (1987)

    Article  Google Scholar 

  69. F.P. Miknis, T.F. Turner, The bitumen intermediate in isothermal and nonisothermal decomposition of oil shales, in Composition, Geochemistry and Conversion of Oil Shales, ed. by C. Snape, NATO ASI Series vol 455, Kluwer, 1995, pp. 295–311

    Google Scholar 

  70. T.-V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)

    Article  Google Scholar 

  71. H. Freund, J.A. Clouse, G.A. Otten, Effect of pressure on the kinetics of kerogen pyrolysis. Energy Fuels 7, 1088–1094 (1993)

    Article  Google Scholar 

  72. R. Michels, P. Landais, B.E. Torkelson, R.P. Philp, Effects of effluents and water pressure on oil generation during confined pyrolysis and high-pressure hydrous pyrolysis. Geochim. Cosmochim. Acta 59, 1589–1604 (1995)

    Article  Google Scholar 

  73. J. Tomic, F. Behar, M. Vandenbroucke, Y. Tang, Artificial maturation of Monterey (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Org. Geochem. 23, 647–660 (1995)

    Article  Google Scholar 

  74. J.S. Sinninghe Damsté, M.E.L. Kohnen, B. Horsfield, Origin of low-molecular-weight alkylthiophenes in pyrolysates of sulfur-rich kerogens as revealed by micro-scale sealed vessel pyrolysis. Org. Geochem. 29, 1891–1903 (1998)

    Article  Google Scholar 

  75. D.K. Baskin, K.E. Peters, Early generation characteristics of a sulfur-rich Monterey kerogen. AAPG Bull. 76, 1–13 (1992)

    Google Scholar 

  76. M.P. Koopmans, W.I.C. Rijpstra, J.W. de Leeuw, M.D. Lewan, J.S. Sinninghe, Damsté, Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation, Jordan. Org. Geochem. 28, 503–521 (1998)

    Article  Google Scholar 

  77. M.D. Lewan, M.J. Kotarba, J.B. Curtis, D. Wieclaw, P. Kosakowski, Oil-generation kinetics for organic facies with Type-II and –IIS kerogen in the Menilite shales of the Polish Carpathians. Geochim. Cosmochim. Acta 70, 3351–3368 (2006)

    Article  Google Scholar 

  78. F. Behar, D.M. Jarvie, Compositional modeling of gas generation from two shale gas resource systems: Barnett shale (United States) and Posidonia shale (Germany), in Critical Assessment of Shale Resource Plays, AAPG Memoir 103, 2013, pp. 25–44

    Google Scholar 

  79. R.L. Braun, A.K. Burnham, Mathematical model of oil generation, degradation, and expulsion. Energy Fuels 4, 132–146 (1990)

    Article  Google Scholar 

  80. H.J. Schenk, B. Horsfield, Kinetics of petroleum generation by programmed-temperature closed- versus open-system pyrolysis. Geochim. Cosmochim. Acta 57, 623–630 (1993)

    Article  Google Scholar 

  81. H.J. Schenk, R. di Primio, B. Horsfield, The conversion of oil into gas in petroleum reservoirs. Part 1: comparative kinetic investigation of gas generation from crude oils of lacustrine, marine, and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Org. Geochem. 26, 457–481 (1997)

    Article  Google Scholar 

  82. A. Amrani, M.D. Lewan, Z. Aizenshtat, Stable sulfur isotope partitioning during petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochim. Cosmochim. Acta 69, 5317–5331 (2005)

    Article  Google Scholar 

  83. W.L. Orr, Evaluating kerogen sulfur content from crude oil properties: cooperative Monterey organic geochemistry study, in The Monterey Formation: From Rocks to Molecules, ed. by C.M. Isaacs, J. Rullkötter, (Columbia University Press, 2001), pp. 348–367

    Google Scholar 

  84. A.K. Burnham, R.L. Braun, Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Org. Geochem. 16, 27–39 (1990)

    Article  Google Scholar 

  85. A.K. Burnham, Comment on ‘Experiments on the role of water in petroleum formation’ by M.D. Lewan. Geochem. Cosmochim. Acta 62, 2207–2210 (1998)

    Google Scholar 

  86. T.E. Ruble, M.D. Lewan, R.P. Philp, New insights on the Green River petroleum system in the Uinta Basin from hydrous-pyrolysis experiments: reply. AAPG Bull. 87, 1535–1541 (2003)

    Article  Google Scholar 

  87. J.G. Stainforth, Practical kinetic modeling of petroleum generation and expulsion. Mar. Petrol. Geol. 26, 552–572 (2009)

    Article  Google Scholar 

  88. M.D. Lewan, Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 61, 3691–3723 (1997)

    Article  Google Scholar 

  89. P. Hanbaba, Reaktionkinetische Untersuchungen sur Kohlenwasserstoffen bindung aus Steinkohlen bie niedregen Aufheizgeschwindigkeiten. Dissertation, University of Aachen, 1967

    Google Scholar 

  90. R.L. Braun, A.K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1, 153–161 (1987)

    Article  Google Scholar 

  91. J.G. Reynolds, A.K. Burnham, T.O. Mitchell, Kinetic analysis of California petroleum source rocks by programmed temperature micropyrolysis. Org. Geochem. 23, 109–120 (1995)

    Article  Google Scholar 

  92. S. Vyazovkin, C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53–68 (1999)

    Article  Google Scholar 

  93. A.K. Burnham, A simple kinetic model of oil generation, vaporization, coking, and cracking. Energy Fuels 29, 7156–7167 (2015). Correction: doi:10.1021/acs.energyfuels.6b00406

  94. A.K. Burnham, R.L. Braun, General kinetic model of oil shale pyrolysis. Situ 9, 1–23 (1985)

    Google Scholar 

  95. R.L. Braun, A.K. Burnham, Thermal cracking of hydrocarbons, (Lawrence Livermore National Laboratory Rept. UCID-21507, 1988), p. 22

    Google Scholar 

  96. A.K. Burnham, A Simple Kinetic Model of Petroleum Formation and Cracking, (Lawrence Livermore National Laboratory Rept. UCID-21665, 1986), p. 11

    Google Scholar 

  97. R.L. Braun, A.K. Burnham, PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Org. Geochem. 19, 161–172 (1992)

    Article  Google Scholar 

  98. R.L. Braun, A.K. Burnham, User’s Manual for PMOD, A Pyrolysis and Primary migration Model, (Lawrence Livermore National Laboratory Rept. UCRL-MA-107789 Rev. 1, 1993), p. 74

    Google Scholar 

  99. R.L. Braun, A.K. Burnham, Chemical Reaction Model for Oil and Gas Generation from Type I and II Kerogen, (Lawrence Livermore National Laboratory Rept. UCID-ID-114143, 1993), p. 26

    Google Scholar 

  100. A.K. Burnham, J.J. Sweeney, Modeling the Maturation and Migration of Petroleum, in Handbook of Petroleum Geology, Chap. 5, ed. by N.H. Foster, E.A. Beaumont, AAPG, Tulsa OK, 1991, pp. 55–63

    Google Scholar 

  101. D.R. Leavitt, A.L. Tyler, A.S. Kafesjian, Kerogen decomposition kinetics of selected Green River and Eastern U.S. oil shales from thermal solution experiments. Energy Fuels 1, 520–525 (1987)

    Article  Google Scholar 

  102. J.C. Monin, J. Connan, J.L. Oudin, B. Durand, Quantitative and qualitative experimental approach of oil and gas generation: application to the North Sea source rocks. Org. Geochem. 16, 133–142 (1990)

    Article  Google Scholar 

  103. A.K. Burnham, R.L. Braun, J.J. Sweeney, J.G. Reynolds, C. Vallejos, S. Talukdar, Kinetic Modeling of Petroleum Formation in the Maracaibo Basin: Final Report, U. S. Department of Energy Report DOE/BC/92001051, 1992, 132 pp

    Google Scholar 

  104. A.K. Burnham, B. Dahl, Compositional modelling of kerogen maturation, Poster Sessions from the 16th International Meeting on Organic Geochemistry, Stavanger, 1993, pp. 241–246

    Google Scholar 

  105. J. Espitalié, P. Ungerer, I. Irwin, F. Marquis, Primary cracking of kerogens. Experimenting and modelling C1, C2–C5, C5–C15, and C15+ classes of hydrocarbons formed. Org. Geochem. 13, 893–899 (1988)

    Article  Google Scholar 

  106. A.K. Burnham, H.R. Gregg, R.L. Braun, Unraveling the kinetics of petroleum destruction by using 1, 2-13C isotopically labeled dopants. Energy Fuels 9, 190–191 (1995)

    Article  Google Scholar 

  107. R.C. Neavel, Liquefaction of coal in hydrogen-donor and non-donor vehicles. Fuel 55, 237–242 (1976)

    Article  Google Scholar 

  108. D.W. van Krevelen, Coal. Typology-Chemistry-Physics-Constitution, (Elsevier, 1961), pp. 201–218

    Google Scholar 

  109. S. Vasireddy, B. Morreale, A. Cugini, C. Song, J.J. Spivey, Clean liquids fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Envir. Sci. 4, 311–345 (2011)

    Article  Google Scholar 

  110. K.K. Robinson, Reaction engineering of direct coal liquefaction. Energies 2, 976–1006 (2009)

    Article  Google Scholar 

  111. S. Weller, M.G. Pelipetz, S. Friedman, Kinetics of coal hydrogenation: conversion of asphalt. Ind. Eng. Chem. 43, 1572–1575 (1951)

    Article  Google Scholar 

  112. S. Weller, M.G. Pelipetz, S. Friedman, Kinetics of coal hydrogenation: conversion of anthraxylon. Ind. Eng. Chem. 43, 1575–1579 (1951)

    Article  Google Scholar 

  113. L.L. Anderson, Coal liquefaction kinetics, in Clean Utilization of Coal: Coal Structure and Reactivity, Cleaning, and Environmental Aspects, ed. by Y. Yurum, NATO ASI Series C: vol. 370, Kluwer, 1992, pp. 39–48

    Google Scholar 

  114. A.P. Oele, H.I. Waterman, M.L. Goedkoop, D.W. van Krevelen, Extractive disintegration of bituminous coals. Fuel 30, 169–178 (1951)

    Google Scholar 

  115. K. Das, Solvent and Supercritical Fluid Extraction of Oil Shale: A Literature Survey, U.S. Dept. of Energy Technical Note DE89011708, 1989

    Google Scholar 

  116. W.E. Robinson, J.J. Cummins, Composition of low-temperature thermal extracts from Colorado oil shale. J. Chem. Eng. Data 5, 74–80 (1960)

    Article  Google Scholar 

  117. J.F. Patzer II, W.G. Moon, G.L. Johns, A.B. King, Kinetic and reaction engineering model for thermal solution of oil shale in FCC decant oil. Chem. Eng. Sci. 41, 1005–1011 (1986)

    Article  Google Scholar 

  118. I. Johannes, L. Tiikma, H. Luik, G. Sărajeva, Thermal extraction of oil from a Utah Green River (USA) oil shale in autoclaves. Intl. J. Eng. Appl. Sci. 6, 23–35 (2015)

    Google Scholar 

  119. S.D. Carter, T.L. Robl, A.M. Rubel, D.N. Taulbee, Processing of eastern US oil shale in a multistaged fluidized bed system. Fuel 69, 1124–1128 (1990)

    Article  Google Scholar 

  120. M.J. Roberts, D.M. Rue, F.S. Lau, Pressurized fluidized-bed hydroretorting of six eastern shales in batch and continuous laboratory-scale reactors. Fuel 71, 335–341 (1992)

    Article  Google Scholar 

  121. R.M. Baldwin, K.W. Chen, Pyrolysis and hydropyrolysis of two carbonaceous Australian oil shales in supercritical toluene and tetralin. Fuel 66, 353–357 (1987)

    Article  Google Scholar 

  122. L. Tiikma, I. Johannes, J. Luik, A. Zaidentstal, N. Vink, Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol. 85, 502–507 (2009)

    Article  Google Scholar 

  123. L. Tiikma, I. Johannes, J. Luik, A. Lepp, G. Sharayeva, Extraction of oil from Jordanian Attarat oil shale. Oil Shale 32, 218–239 (2015)

    Article  Google Scholar 

  124. R.M. Baldwin, J.A. Manley, Pyrolysis and hydropyrolysis of Kentucky oil shale in supercritical toluene under rapid heating conditions. Fuel Proc. Technol. 17, 201–207 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan K. Burnham .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Burnham, A.K. (2017). Pyrolysis in Closed Systems. In: Global Chemical Kinetics of Fossil Fuels. Springer, Cham. https://doi.org/10.1007/978-3-319-49634-4_6

Download citation

Publish with us

Policies and ethics