Skip to main content

Metal Matrix/Nanocarbons Composites Based on Copper and Aluminum

  • Chapter
  • First Online:
Industry 4.0

Abstract

Metal matrix composites possess high-temperature capability, high thermal conductivity, low thermal expansion coefficient, and high specific stiffness and strength. Recently discovered carbon nanostructures such as carbon nanofibers (CNFs), nanotubes (CNTs) and graphene are promising components for next-generation high-performance structural and multifunctional composite materials. Here, we utilized new approach to fabricate composite materials on the basis of aluminum, and copper matrix. In this chapter we summarize our knowledge and also present new results on the preparation of a good dispersion of CNTs, CNFs and graphene in a matrix, with the intention of improving the mechanical or electrical properties of metal-carbon composite nanomaterials. This study shows the way to solve one of the largest problem to creating strong, electrically or thermally conductive CNT/CNF or graphene composites: the difficulty of achieving a good dispersion of the carbon nanomaterials in a metal matrix. We show that discontinuously reinforcement can be successfully developed for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babichev, A. P., Babushkina, N. A., & Bratkovskii, A. M. (1991). Physical quantities. A handbook [in Russian]. Moscow: Énergoatomizdat.

    Google Scholar 

  • Calvert, P. (1999). Nanotube composites: A recipe for strength. Nature, 399, 210–211. doi:10.1038/20326.

    Article  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and nanotubes. San Diego: Academic Press.

    Google Scholar 

  • Kidalov, S. V., Shakhov, F. M., Davidenko, V. M., Yashin, V. A., Bogomazov, I. E., & Vul’, A. Y. (2008a). Static synthesis of microdiamonds from a charge containing nanodiamonds. Technical Physics Letters, 34, 640–642. doi:10.1134/S106378500808004X.

    Google Scholar 

  • Kidalov, S. V., Shakhov, F. M., Davidenko, V. M., Yashin, V. A., Bogomazov, I. E., & Vul’, A. Y. (2008b). Effect of carbon materials on the graphite – diamond phase transition at high pressures and temperatures. Physics of the Solid State, 50, 981–985. doi:10.1134/S1063783408050302.

    Article  Google Scholar 

  • Koltsova, T., Larionova, T., Fadin, Y., & Tolochko, O. (2015). Copper-based composite materials reinforced with carbon nanostructures. Materials Science (Medziagotyra), 21, 364–368. doi:10.5755/j01.ms.21.3.7348.

    Google Scholar 

  • Larionova, T. V., Koltsova, T. S., Fadin, Y., & Tolochko, O. V. (2014). Friction and wear of copper–carbon nanofibers compact composites prepared by chemical vapor deposition. Wear, 319, 118–122. doi:10.1016/j.wear.2014.07.020.

    Article  Google Scholar 

  • Moustafa, S. F., El-Badry, S. A., Sanad, A. M., & Kieback, B. (2002). Friction and wear of copper–graphite composites made with cu-coated and uncoated graphite powders. Wear, 253, 699–710. doi:10.1016/S0043-1648(02)00038-8.

    Article  Google Scholar 

  • Nasibulin, A. G., Koltsova, T. S., Nasibulina, L. I., Anoshkin, I. V., Semencha, A. V., & Tolochko, O. V. (2013). A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 61, 1862–1871. doi:10.1016/j.actamat.2012.12.007.

    Article  Google Scholar 

  • Nasibulina, L. I., Koltsova, T. S., Joentakanen, T., Nasibulin, A. G., Tolochko, O. V., Malm, J. E. M., et al. (2010). Direct synthesis of carbon nanofibers on the surface of copper powder. Carbon, 48, 4559–4562. doi:10.1016/j.carbon.2010.07.028.

    Article  Google Scholar 

  • Rakov, E. G. (2006). Nanotubes and fullerenes [in Russian]. Moscow: Logos.

    Google Scholar 

  • Reich, S., Thomsen, C., & Maultzsch, J. (2004). Carbon nanotubes. Weinheim: Wiley-VCH.

    Google Scholar 

  • Riggs, J. E., Guo, Z. X., Carroll, D. L., & Sun, Y. P. (2000). Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society, 122, 5879–5880. doi:10.1021/ja9942282.

    Article  Google Scholar 

  • Rudskoy, A. I., Koltsova, T. S., Shakhov, F. M., Tolochko, O. V., & Mikhailov, V. G. (2015). Effect of hot pressing modes on the structure and properties of an ‘aluminum – carbon nanofibers’ composite material. Metal Science and Heat Treatment, 56, 525–530. doi:10.1007/s11041-015-9793-6.

    Article  Google Scholar 

  • Rudskoy, A. I., Tolochko, O. V., Kol’tsova, T. S., & Nasibulin, A. G. (2014). Synthesis of carbon nanofibers on the surface of particles of aluminum powder. Metal Science and Heat Treatment, 55, 564–568. doi:10.1007/s11041-014-9670-8.

    Article  Google Scholar 

  • Sarmadi, H., Kokabi, A. H., & Seyed Reihani, S. M. (2013). Friction and wear performance of copper–graphite surface composites fabricated by Friction Stir Processing (FSP). Wear, 304, 1–12. doi:10.1007/s11041-015-9793-6.

    Article  Google Scholar 

  • Zhang, X., Li, Q., Holesinger, T. G., Arendt, P. N., Huang, J., Kirven, P. D., et al. (2007). Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Advanced Materials, 19, 4198–4201. doi:10.1002/adma.200700776.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Contract No. 14.Z50.31.0018 with the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Tolochko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tolochko, O.V., Michailov, V.G., Rudskoi, A.I. (2017). Metal Matrix/Nanocarbons Composites Based on Copper and Aluminum. In: Devezas, T., Leitão, J., Sarygulov, A. (eds) Industry 4.0. Studies on Entrepreneurship, Structural Change and Industrial Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-49604-7_10

Download citation

Publish with us

Policies and ethics