Skip to main content

Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art

  • Chapter
  • First Online:

Abstract

Hemicellulose, a heteropolysaccharide, is a second major component of lignocellulosic biomass (LCB). It is a potential source of various rare sugars, mainly xylose, because the biomass is cheap, renewable, and available globally. Xylose can be an economic and attractive substrate to produce numerous specialty chemicals, especially xylitol. It is particularly significant to depolymerize the complex composition of biomass to recover hemicellulosic sugars and to prepare cellulosic part available for efficient digestion. LCB hydrolysis by various techniques is an inevitable method for depolymerizing hemicellulose into xylose and other hemicellulosic sugars. Among the general methods of hemicellulose hydrolysis (such as acid, autohydrolysis, enzyme, combined acid-enzyme, and autohydrolysis-enzyme), dilute acid hydrolysis is the most investigated and extensively applied method due to its simplicity, effectiveness, and economic feasibility. A number of operating variables such as temperature, catalyst load, reaction time, and liquid to solid ratio significantly affect the kinetics of hemicellulose hydrolysis. Dilute acid catalyzes hemicellulose fractionation at elevated temperature and pressure within short residence time. This chapter reviews the current literature on hemicellulose hydrolysis methods and identifies the most suitable way to recover maximum hemicellulosic sugars (viz., xylose and arabinose) from LCB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Download references

Acknowledgments

The authors are grateful to the University of Chittagong, Bangladesh, Universiti Malaysia Pahang, and to the Ministry of Higher Education (MTUN-COE Research Grant No. RDU 121205), Malaysia, for providing necessary facilities and funds in order to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. M. Rafiqul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rafiqul, I.S.M., Sakinah, A.M.M., Zularisam, A.W. (2017). Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art. In: Singh, L., Kalia, V. (eds) Waste Biomass Management – A Holistic Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_4

Download citation

Publish with us

Policies and ethics