Skip to main content

An Integrated Approach for Efficient Energy Recovery Production from Livestock and Agro-Industrial Wastes

  • Chapter
  • First Online:
Waste Biomass Management – A Holistic Approach

Abstract

The supply and food safety needs of the growing population, particularly in (peri) urban areas, promote the intensification, concentration, and specialization of human, agricultural, livestock, and agro-industrial activities. As a result, important quantities of waste and wastewater, with significant organic and nutrient loads, are generated and need to be managed properly in order to protect the soil quality and fertility, as well as to prevent water and air pollution. Among the models, processes, treatment, and recovery technologies, anaerobic digestion can be highlighted due to the production of biogas, a renewable energy source.

The understanding of the spatiotemporal patterns of the resources and the conditions of waste and wastewater production and use provided by the analysis of these complex and adaptive socio-ecological systems, together with the knowledge of the biological process of biogas production, will support the selection and optimization of technologies, as well as the sizing and location of biogas plants for the promotion of renewable energy and local level economies. This integrated, hierarchical, and multidisciplinary approach takes a critical nature in the definition of technical and organizational solutions that contribute to sustainable development, for the effective quality of life, the local environment, and economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Tauseef SM, Abbasi SS (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sustain Energy Rev 16:3228–3242. doi:10.1016/j.rser.2012.02.046

    Article  CAS  Google Scholar 

  • AEBIOM–European Biomass Association (2009) A biogas roadmap for Europe. www.aebiom.org

    Google Scholar 

  • Agyeman FO, Tao W (2014) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manage 133:268–274. doi:10.1016/j.jenvman.2013.12.016

    Article  CAS  PubMed  Google Scholar 

  • Akinbami JFK, Ilori MO, Oyebisi TO, Akinwumi IO, Adeoti O (2001) Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew Sust Energy Rev 5:97–112. doi:10.1016/S1364-0321(00)00005-8

    Article  Google Scholar 

  • Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T (2008) Biogas handbook. University of Southern Denmark, Esbjerg, 126 p. ISBN:978–87–992962-0-0

    Google Scholar 

  • Alçada-Almeida L, Coutinho-Rodrigues J, Current J (2009) A multiobjective modeling approach to locating incinerators. Socioecon Plann Sci 43:111–120. doi:10.1016/j.seps.2008.02.008

    Article  Google Scholar 

  • Alder A, Prasuhn V, Liniger H, Herweg K, Hurni H, Candinas A, Ulrich H, Gujer (2015) A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland—a risk assessment tool for planning and policy-making. Land Use Policy, 48:236–249. doi:10.1016/j.landusepol.2015.06.001

  • Alonso J, Castro P, Guerra C, Goncalves J, Pôças I, Marcos B, Honrado J (2013) Novel tools to improve the management of spatial data quality in the context of ecosystem and biodiversity monitoring, in: GI_Forum 2013—Creating the GISociety, Salzbug, pp 7. doi:10.1553/giscience2013

    Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust 34:755–781. doi:10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  • Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Impe JV, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energy Rev 15:4295–4301. doi:10.1016/j.rser.2011.07.121

    Article  CAS  Google Scholar 

  • Aslanzadeh S, Rajendran K, Taherzadeh MJ (2014) A comparative study between single- and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int Biodeter Biodegr 95:181–188. doi:10.1016/j.ibiod.2014.06.008

    Article  CAS  Google Scholar 

  • Bardi L, Malusà E, Zoppellari F, Bosco F, Bergesio B, Bertin B (2010) Production of renewable energies and biomolecules from livestock and agro-industrial waste: the BIOMOLENER Project. J Biotechnol 150:172. doi:10.1016/j.jbiotec.2010.08.449

    Article  Google Scholar 

  • Batzias FA, Sidiras DK, Spyrou EK (2005) Evaluating livestock manures for biogas production: a GIS based method. Renew Energy 30:1161–1176. doi:10.1016/j.renene.2004.10.001

    Article  CAS  Google Scholar 

  • Bojesen M, Boerboom L, Skov-Petersen H (2015) Towards a sustainable capacity expansion of the Danish biogas sector. Land Use Policy 42:264–277. doi:10.1016/j.landusepol.2014.07.022

    Article  Google Scholar 

  • Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, pp 335–416. ISBN:13 978–1–4020-5486-0

    Google Scholar 

  • Brito LM, Coutinho J, Smith SR (2008) Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresour Technol 99:8955–8960. doi:10.1016/j.biortech.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Carlman I, Grönlund E, Longueville A (2015) Models and methods as support for sustainable decision-making with focus on legal operationalization. Ecol Model 306:95–100. doi:10.1016/j.ecolmodel.2014.10.010

    Article  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manage 32:1634–1650. doi:10.1016/j.wasman.2012.04.016

    Article  CAS  Google Scholar 

  • Chae KJ, Jang A, Yim SK, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99:1–6. doi:10.1016/j.biortech.2006.11.063

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  • Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534. doi:10.1016/j.biortech.2007.01.057

    Article  PubMed  CAS  Google Scholar 

  • Church RL (2002) Geographical information systems and location science. Comput Oper Res 29:541–562. doi:10.1016/S0305-0548(99)00104-5

    Article  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8. doi:10.1016/S0960-1481(00)00019-7

    Article  CAS  Google Scholar 

  • Cofie O, Amede T (2015) Water management for sustainable agricultural intensification and smallholder resilience in sub-Saharan Africa. Water Resour Rural Dev 6:3–11. doi:10.1016/j.wrr.2015.10.001

    Article  Google Scholar 

  • Dagnall S, Hill J, Pegg D (2000) Resource mapping and analysis of farm livestock manures—assessing the opportunities for biomass-to-energy schemes. Bioresour Technol 71:225–234. doi:10.1016/S0960-8524(99)00076-0

    Article  CAS  Google Scholar 

  • Davis J, O’Grady A, Dale A, Arthington A, Gell P, Driver P, Bond N, Casanova M, Finlayson M, Watts R, Capon S, Nagelkerken I, Tingley R, Fry B, Page T, Specht A (2015) When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci Total Environ 534:65–78. doi:10.1016/j.scitotenv.2015.03.127

    Article  CAS  PubMed  Google Scholar 

  • De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. doi:10.1016/j.biortech.2012.02.079

    Article  CAS  PubMed  Google Scholar 

  • De Vrieze J, De Lathouwer L, Verstraete W, Boon N (2013) High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res 47:3732–3741. doi:10.1016/j.watres.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  • De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W, Boon N (2015) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biot 99:189–199. doi:10.1007/s00253-014-6046-3

    Article  CAS  Google Scholar 

  • Dearman B, Marschner P, Bentham RH (2006) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Appl Microbiol Biotechnol 69:589–596. doi:10.1007/s00253-005-0076-9

    Article  CAS  PubMed  Google Scholar 

  • Demartini E, Gaviglio A, Bertoni D (2015) Integrating agricultural sustainability into policy planning: a geo-referenced framework based on Rough Set Theory. Environ Sci Policy 54:226–239. doi:10.1016/j.envsci.2015.07.006

    Article  Google Scholar 

  • Deng L, Yang H, Liu G, Zheng D, Chen Z, Liu Y, Pu X, Song L, Wang Z, Lei Y (2014) Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater. Appl Energy 134:349–355. doi:10.1016/j.apenergy.2014.08.027

    Article  CAS  Google Scholar 

  • Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol 11:325–341. doi:10.1007/s11157-012-9277-8

    Article  CAS  Google Scholar 

  • Farahani RZ, SteadieSeifi M, Asgari N (2010) Multiple criteria facility location problems: a survey. Appl Math Model 34:1689–1709. doi:10.1016/j.apm.2009.10.005

    Article  Google Scholar 

  • Fernandez-Mena H, Nesme T, Pellerin S (2016) Towards an Agro-Industrial Ecology: a review of nutrient flow modelling and assessment tools in agro-food systems at the local scale. Sci Total Environ 543:467–479. doi:10.1016/j.scitotenv.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  • Ferretti V, Pomarico S (2012) Integrated sustainability assessments: a spatial multi-criteria evaluation for siting a waste incinerator plant in the Province of Torino (Italy). Environ Dev Sustain 14:843–867. doi:10.1007/s10668-012-9354-8

    Article  Google Scholar 

  • Fodor Z, Klemeš JJ (2012) Waste as alternative fuel—minimising emissions and effluents by advanced design. Process Saf Environ Protect 90(3):263–284. doi:10.1016/j.psep.2011.09.004

    Article  CAS  Google Scholar 

  • Gaudino S, Goia I, Grignani C, Monaco S, Sacco D (2014) Assessing agro-environmental performance of dairy farms in northwest Italy based on aggregated results from indicators. J Environ Manage 140:120–134. doi:10.1016/j.jenvman.2014.03.010

    Article  PubMed  Google Scholar 

  • Gómez A, Zubizarreta J, Rodrigues M, Dopazo C, Fueyo N (2010) Potential and cost of electricity generation from human and animal waste in Spain. Renew Energy 35:498–505. doi:10.1016/j.renene.2009.07.027

    Article  Google Scholar 

  • Goodchild M, Li L (2012) Assuring the quality of volunteered geographic information. Spatial Stat 1:110–120. doi:10.1016/j.spasta.2012.03.002

    Article  Google Scholar 

  • Greer D (2011) Funding anaerobic digestion facilities. BioCycle 52:70–73

    Google Scholar 

  • Habitats Directive (1992) Council Directive Habitats (92/43/EEC) on the conservation of natural habitats and of wild fauna and flora

    Google Scholar 

  • Harris PW, McCabe BK (2015) Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl Energy 155:560–575. doi:10.1016/j.apenergy.2015.06.026

    Article  CAS  Google Scholar 

  • Höhn J, Lehtonen E, Rasi S, Rintala J (2014) A Geographical Information System (GIS) based methodology for determination of potential biomasses and locals for biogas plants in southern Finland. Appl Energy 113:1–10. doi:10.1016/j.apenergy.2013.07.005

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. doi:10.1016/j.biortech.2008.12.046

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Shi X, Yu D, Öborn I, Blombäck K, Pagella T, Wang H, Sun W, Sinclair F (2006) Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agric Ecosyst Environ 112:391–402. doi:10.1016/j.agee.2005.08.037

    Article  Google Scholar 

  • INSPIRE Directive (2007) 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community

    Google Scholar 

  • Jeliazkov A, Mimet A, Chargé R, Jiguet F, Devictor V, Chiron F (2016) Impacts of agricultural intensification on bird communities: new insights from a multi-level and multi-facet approach of biodiversity. Agric Ecosyst Environ 216:9–22. doi:10.1016/j.agee.2015.09.017

    Article  Google Scholar 

  • Jiao W, Ouyang W, Hao F, Lin C (2015) Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches. Sci Total Environ 536:609–615. doi:10.1016/j.scitotenv.2015.07.118

    Article  CAS  PubMed  Google Scholar 

  • Jingura RM, Matengaifa R (2009) Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew Sust Energy Rev 13:1116–1120. doi:10.1016/j.rser.2007.06.015

    Article  CAS  Google Scholar 

  • Kelly C, Ferrara A, Wilson G, Ripullone F, Nolè A, Harmer N, Salvati L (2015) Community resilience and land degradation in forest and shrubland socio-ecological systems: evidence from Gorgoglione, Basilicata, Italy. Land Use Policy 46:11–20. doi:10.1016/j.landusepol.2015.01.026

    Article  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manage 31:1737–1744. doi:10.1016/j.wasman.2011.03.021

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi:10.1016/j.copbio.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  • Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng 2:1821–1830. doi:10.1016/j.jece.2014.07.024

    Article  CAS  Google Scholar 

  • Kothari R, Pandey AK, Kumar S, Tyagi VV, SK T (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195. doi:10.1016/j.wasman.2011.03.021

    Article  CAS  Google Scholar 

  • Kousksou T, Allouhi A, Belattar M, Jamil A, El Rhafiki T, Arid A, Zeraouli Y (2015) Renewable energy potential and national policy directions for sustainable development in Morocco. Renew Sust Energy Rev 47:46–57. doi:10.1016/j.rser.2015.02.056

    Article  Google Scholar 

  • Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energy Rev 34:491–500. doi:10.1016/j.rser.2014.03.041

    Article  CAS  Google Scholar 

  • Lefebvre M, Espinosa, Gomez M, Paloma S (2012) The influence of the Common Agricultural Policy on agricultural landscape, JRC Scientifics and Policy Reports. European Commission. Report EUR 25459 EN. 75 pp and Annexes

    Google Scholar 

  • Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev 15:821–826. doi:10.1016/j.rser.2010.07.042

    Article  CAS  Google Scholar 

  • Li L, He Q, Ma Y, Wang X, Peng X (2015) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresour Technol 189:113–120. doi:10.1016/j.biortech.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Lima M, Romanelli A, Massone H (2015) Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed. Sci Total Environ 530–531:333–346. doi:10.1016/j.scitotenv.2015.05.026

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Ding HB, Wang JY (2010) Food waste to bioenergy. In: Khanal SK, Surampalli RY, Zhang TC, Lamsal BP, Tyagi RD, Kao CM (ed) Bioenergy and biofuel from biowastes and biomass. American Society of Civil Engineers, pp 43–70. ISBN:978–0–7844-1089-9. doi:10.1061/9780784410899.ch03

    Google Scholar 

  • Lönnqvist T, Silveira S, Sanches-Pereira A (2013) Swedish resource potential from residues and energy crops to enhance biogas generation. Renew Sust Energy Rev 21:298–314. doi:10.1016/j.rser.2012.12.024

    Article  Google Scholar 

  • Ma J, Scott NR, DeGloria S, Lembo AJL (2005) Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. Biomass Bioenergy 28:591–600. doi:10.1016/j.biombioe.2004.12.003

    Article  Google Scholar 

  • Madlener R, Schmid C (2009) Spatial diffusion of biogas technology in Switzerland: a GIS-based multi-agent simulation approach. Int J Environ Pollut 39:28–43. doi:10.1504/IJEP.2009.027141

    Article  CAS  Google Scholar 

  • Madlener R, Hengeller Antunes C, Dias LC (2009) Assessing the performance of biogas plants with multi-criteria and data envelopment analysis. Eur J Oper Res 197:1084–1094. doi:10.1016/j.ejor.2007.12.051

    Article  Google Scholar 

  • Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Energy Rev 15:3141–3155. doi:10.1016/j.rser.2011.04.026

    Article  CAS  Google Scholar 

  • Maeng H, Lund H, Hvelplund F (1999) Biogas plants in Denmark: technological and economic developments. Appl Energy 64:195–206. doi:10.1016/S0306-2619(99)00067-7

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multi-criteria decision analysis. Wiley, New York, NY, 408 p. ISBN:978–0–471-32944-2

    Google Scholar 

  • Malczewski J (2006) GIS-based multi-criteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726. doi:10.1080/13658810600661508

    Article  Google Scholar 

  • Manos B, Bartocci P, Partalidou M, Fantozzi F, Arampatzis S (2014) Review of public–private partnerships in agro-energy districts in Southern Europe: the cases of Greece and Italy. Renew Sust Energy Rev 39:667–678. doi:10.1016/j.rser.2014.07.031

    Article  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energy Rev 45:540–555. doi:10.1016/j.rser.2015.02.032

    Article  CAS  Google Scholar 

  • Marchettini N, Ridolfi R, Rustici M (2007) An environmental analysis for comparing waste management options and strategies. Waste Manage 27:562–571. doi:10.1016/j.wasman.2006.04.007

    Article  CAS  Google Scholar 

  • Maspolim Y, Zhou Y, Guo C, Xiao K, Ng WJ (2015) Comparison of single-stage and two-phase anaerobic sludge digestion systems—performance and microbial community dynamics. Chemosphere 140:54–62. doi:10.1016/j.rser.2015.02.032

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo M, Weyland F, Herrera L, Villarino S, Barral M, Auer A (2015) Ecosystem services research in contrasting socio-ecological contexts of Argentina: critical assessment and future directions. Ecosyst Serv 16:63–73. doi:10.1016/j.ecoser.2015.10.001

    Article  Google Scholar 

  • Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll S, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energy Rev 36:412–427. doi:10.1016/j.rser.2014.04.039

    Article  CAS  Google Scholar 

  • Molino A, Nanna F, Ding Y, Bikson B, Braccio G (2013) Biomethane production by anaerobic digestion of organic waste. Fuel 103:1003–1009. doi:10.1016/j.fuel.2012.07.070

    Article  CAS  Google Scholar 

  • Murphy JD, Power N (2009) Technical and economic analysis of biogas production in Ireland utilizing three different crop rotations. Appl Energy 10:3–15. doi:10.1016/j.apenergy.2008.03.015

    Google Scholar 

  • Murphy JD, McKeogh E, Kiely G (2004) Technical/economic/environmental analysis of biogas utilization. Appl Energy 77:407–427. doi:10.1016/j.apenergy.2003.07.005

    Article  CAS  Google Scholar 

  • Neves LCM, Converti A, Vessoni TC (2009) Biogas production: new trends for alternative energy sources in rural and urban zones. Chem Eng Technol 32:1147–1153. doi:10.1002/ceat.200900051

    Article  CAS  Google Scholar 

  • Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001. doi:10.1016/j.biortech.2008.03.049

    Article  CAS  PubMed  Google Scholar 

  • Nitrates Directive (1991) Council Directive (91/676/EEC) Council Directive of 12 December 1991 concerning the protection of waters against pollution by nitrates from agricultural sources

    Google Scholar 

  • Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93:496–506. doi:10.1016/j.apenergy.2011.12.020

    Article  Google Scholar 

  • Padgham J, Jabbour J, Dietrich K (2015) Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Climate 12:183–204. doi:10.1016/j.uclim.2015.04.003

    Article  Google Scholar 

  • Panichelli L, Gnansounou E (2008) GIS-based approach for defining bioenergy facilities location: ya case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass Bioenergy 32:289–300. doi:10.1016/j.biombioe.2007.10.008

    Article  Google Scholar 

  • Park YS, Baehr C, Larocque G, Sánchez-Pérez J, Sauvage S (2015) Special issue: ecological modelling for ecosystem sustainability. 19th ISEM Conference, 28–31 October 2013, Toulouse, France Ecological Modelling, p 306. doi:10.1016/j.ecolmodel.2015.04.008

    Google Scholar 

  • Perpiña C, Martínez-Llario JC, Pérez-Navarro Á (2013) Multi-criteria assessment in GIS environments for siting biomass plants. Land Use Policy 31:326–335. doi:10.1016/j.landusepol.2012.07.014

    Article  Google Scholar 

  • Powley H, Krom M, Emeis KC, Van Cappellen P (2014) A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea: part 2. Response of nutrient cycles and primary production to anthropogenic forcing: 1950–2000. J Marine Syst 139:420–432. doi:10.1016/j.jmarsys.2014.08.017

    Article  Google Scholar 

  • Prochazka J, Dolejs P, Máca J, Dohanyos M (2012) Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl Microbiol Biotechnol 93:439–447. doi:10.1007/s00253-011-3625-4

    Article  PubMed  CAS  Google Scholar 

  • Rajabifard A (2007) Towards a spatially enabled society. The University of Melbourne, 400 p. ISBN:978–0–7325-1620–8

    Google Scholar 

  • Rajabifard A, Eagleson S (2013) Spatial enablement from an international context—a vision for the North and West Melbourne Corridor. In: Rajabifard A, Eagleson S (eds) Spatial data access and integration to support liveability: a case study in North and West Melbourne. University of Melbourne, Victoria, Australia, pp 1–10. ISBN:978–0–9922918-0-8

    Google Scholar 

  • Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641. doi:10.1016/j.biortech.2013.06.030

    Article  CAS  PubMed  Google Scholar 

  • Rammel C, Stagl S, Wilfing H (2007) Managing complex adaptive systems—a coevolutionary perspective on natural resource management. Ecol Econ. doi:10.1016/j.ecolecon.2006.12.014

    Google Scholar 

  • Rao B, Mane A, Rao AB, Sardeshpande V (2014) Multi-criteria analysis of alternative biogas technologies. Energy Procedia 54:292–301. doi:10.1016/j.egypro.2014.07.272

    Article  Google Scholar 

  • Rico C, Muñoz N, Fernández J, Rico JL (2015) High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: limits in co-substrates ratio and organic loading rate. Chem Eng J 262:794–802. doi:10.1016/j.cej.2014.10.050

    Article  CAS  Google Scholar 

  • Rocha J, Roebeling P, Rial-Rivas M (2015) Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model. Sci Total Environ 536:48–58. doi:10.1016/j.scitotenv.2015.07.038

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues A, Ferraz A, Mamede J, Alonso J (2009) Tratamento de efluentes agro-pecuários por digestão anaeróbia num Reactor Descontínuo Sequencial à temperatura ambiente. In: Proceedings of 3rd International congress of energy, environmental engineering and management, pp 83. ISBN:13 978–84–92669-15-8

    Google Scholar 

  • Rodrigues A, Ferraz A, Alonso J (2010) Evaluation of the potential of anaerobic digestion in a sequencing batch reactor for the treatment of dairy wastewaters. In: Cordovil C, Ferreira L (eds) Proceedings of the 14th Ramiran International conference on treatment and use of organic residues in agriculture: challenges and opportunities towards sustainable management. ISBN:978–972–8669-47-8

    Google Scholar 

  • Rosúa JM, Pasadas M (2012) Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes. Renew Sust Energy Rev 16:4190–4195. doi:10.1016/j.rser.2012.02.035

    Article  Google Scholar 

  • Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. doi:10.1016/j.biombioe.2009.03.001

    Article  Google Scholar 

  • Sánchez-Lozano JM, Hengeller Antunes C, García-Cascales MS, Dias LC (2014) GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew Energy 66:478–494. doi:10.1016/j.renene.2013.12.038

    Article  Google Scholar 

  • Schievano A, Tenca A, Lonati S, Manzini E, Adani F (2014) Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl Energy 124:335–342. doi:10.1016/j.apenergy.2014.03.024

    Article  CAS  Google Scholar 

  • Schutter O, Vanloqueren G (2011) The New Green Revolution: how twenty-first-century science can feed the world. Solutions 2(4):33–44

    Google Scholar 

  • Scott JA, Ho W, Dey PK (2012) A review of multi-criteria decision-making methods for bioenergy systems. Energy 42:146–156. doi:10.1016/j.energy.2012.03.074

    Article  Google Scholar 

  • Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J. doi:10.1155/2014/183752

    Google Scholar 

  • Sheets JP, Yang L, Ge X, Wang Z, Li Y (2015) Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manage 44:94–115. doi:10.1016/j.wasman.2015.07.037

    Article  CAS  Google Scholar 

  • Shilton A, Powell N, Broughton A, Pratt C, Pratt S, Pepper C (2013) Enhance biogas production using cow manure to stabilize co-digestion of whey and primary sludges. Environ Technol 34(17):2491–2496. doi:10.1080/09593330.2013.774032

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Almeida-Alçada L, Dias L (2014) Biogas plants site selection integrating multi-criteria decision aid methods and GIS techniques: a case study in a Portuguese region. Biomass Bioenergy 71:58–68. doi:10.1016/j.biombioe.2014.10.025

    Article  Google Scholar 

  • Smith DB, Almquist CB (2013) The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system. Environ Technol 35:859–867. doi:10.1080/09593330.2013.854398

    Article  CAS  Google Scholar 

  • Squire G, Hawes C, Valentine T, Young M (2015) Degradation rate of soil function varies with trajectory of agricultural intensification. Agric Ecosyst Environ 202:60–167. doi:10.1016/j.agee.2014.12.004

    Article  Google Scholar 

  • Steinhäußer R, Siebert R, Steinführer A, Hellmich M (2015) National and regional land-use conflicts in Germany from the perspective of stakeholders. Land Use Policy 49:183–194. doi:10.1016/j.landusepol.2015.08.009

    Article  Google Scholar 

  • Sultana A, Kumar A (2012) Optimal siting and size of bioenergy facilities using geographic information system. Appl Energy 94:192–201. doi:10.1016/j.apenergy.2012.01.052

    Article  Google Scholar 

  • Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energy Rev 31:846–859. doi:10.1016/j.rser.2013.12.015

    Article  Google Scholar 

  • Taleghani G, Kia AS (2005) Technical-economical analysis of the Saveh biogas power plant. Renew Energy 30:441–446. doi:10.1016/j.renene.2004.06.004

    Article  Google Scholar 

  • Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013) Methane capture from livestock manure. J Environ Manage 117:187–207. doi:10.1016/j.jenvman.2012.12.022

    Article  CAS  PubMed  Google Scholar 

  • Tavares G, Zsigraiová Z, Semiao V (2011) Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Manage 31:1960–1972. doi:10.1016/j.wasman.2011.04.013

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse, 4th edn. Metcalf & Eddy. ISBN:0–07–112250–8

    Google Scholar 

  • Thackway R, Specht A (2015) Edited by Specht A, Gordon I, Groves R, Lambers H, Phinn S. Reprint of: Synthesising the effects of land use on natural and managed landscapes. In: Catalysing transdisciplinary synthesis in ecosystem science and management. Sci Total Environ 534:14–30. doi:10.1016/j.scitotenv.2015.06.093

    Google Scholar 

  • Thompson E, Wang Q, Li M (2013) Anaerobic digester systems (ADS) for multiple dairy farms: a GIS analysis for optimal site selection. Energy Policy 61:114–124. doi:10.1016/j.enpol.2013.06.035

    Article  Google Scholar 

  • Tricase C, Lombardi M (2009) State of the art and prospects of Italian biogas production from animal sewage: technical-economic considerations. Renew Energy 34:477–485. doi:10.1016/j.renene.2008.06.013

    Article  CAS  Google Scholar 

  • Turral H, Burke J, Faurès JM (2011) Climate Change, water and food security. FAO Water Report 36. ISBN:978–92–5-106795-6

    Google Scholar 

  • Tuzkaya G, Önüt S, Tuzkaya UR, Gülsün B (2008) An analytic network process approach for locating undesirable facilities: an example from Istanbul, Turkey. J Environ Manage 88:970–983. doi:10.1016/j.jenvman.2007.05

    Article  PubMed  Google Scholar 

  • Voivontas D, Assimacopoulos D, Koukios EG (2001) Assessment of biomass potential for power production: a GIS based method. Biomass Bioenergy 20:101–112. doi:10.1016/S0961-9534(00)00070-2

    Article  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940. doi:10.1016/j.biortech.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  • Water Framework Directive (2000) Council Directive Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy

    Google Scholar 

  • Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35:1613–1622. doi:10.1016/j.biombioe.2011.01.013

    Article  Google Scholar 

  • Winarso H, Hudalah D, Firman T (2015) Peri-urban transformation in the Jakarta metropolitan area. Habitat Int 49:221–229. doi:10.1016/j.habitatint.2015.05.024

    Article  Google Scholar 

  • Yangang F, Jisheng L (2014) The modification of North China quadrangles in response to rural social and economic changes in agricultural villages: 1970–2010s. Land Use Policy 39:266–280. doi:10.1016/j.landusepol.2014.02.009

    Article  Google Scholar 

  • Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. doi:10.1016/j.procbio.2013.04.012

    Article  CAS  Google Scholar 

  • Zhang H, Yi S, Wu Y (2012) Decision support system and monitoring of eco-agriculture based on WebGIS in Shule Basin. Energy Procedia 14:382–386. doi:10.1016/j.egypro.2011.12.946

    Article  CAS  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energy Rev 38:383–392. doi:10.1016/j.rser.2014.05.038

    Article  CAS  Google Scholar 

  • Zhu J, Zhang Z, Miller C (2006) A laboratory scale sequencing batch reactor with the addition of acetate to remove nutrient and organic matter in pig slurry. Biosyst Eng 93(4):437–446. doi:10.1016/j.biosystemseng.2006.01.010

    Article  Google Scholar 

  • Zubaryeva A, Zaccarelli N, Del Giudice C, Zurlini G (2012) Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion –Mediterranean case study. Renew Energy 39:261–270. doi:10.1016/j.renene.2011.08.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Silva, S., Rodrigues, A.C., Ferraz, A., Alonso, J. (2017). An Integrated Approach for Efficient Energy Recovery Production from Livestock and Agro-Industrial Wastes. In: Singh, L., Kalia, V. (eds) Waste Biomass Management – A Holistic Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_15

Download citation

Publish with us

Policies and ethics