Skip to main content

Novel Regenerated Cellulosic Materials

  • Chapter
  • First Online:
Novel Functional Materials Based on Cellulose

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The regeneration and shaping process for man-made cellulosic materials was introduced. The morphology, structure, properties, and potential applications of the resulting regenerated cellulosic materials were summarized, including cellulose regenerated fibers, cellulose regenerated films, cellulose regenerated beads, cellulose hydrogels, cellulose aerogels, nonwoven membrane, cellulose sponges, ultrathin cellulose fibers or mats, and cellulose-based bioplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  Google Scholar 

  2. Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188

    Article  Google Scholar 

  3. Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508

    Article  Google Scholar 

  4. Barton BF, Reeve JL, McHugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. J Polym Sci, Part B: Polym Phys 35:569–585

    Article  Google Scholar 

  5. Zhang S, Fu CF, Li FX et al (2009) Direct preparation of a novel membrane from unsubstituted cellulose in NaOH complex solution. Iran Polym J 18:767–776

    Google Scholar 

  6. Fink H-P, Weigel P, Purz H et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  Google Scholar 

  7. Romanov VV, Sokira AN, Lunina OB et al (1988) Morphological features of the structure of fibres prepared from solutions of cellulose in methylmorpholine oxide. Fibre Chem 20:38–39

    Article  Google Scholar 

  8. Liu HB, Sale KL, Simmons BA et al (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258

    Article  Google Scholar 

  9. Li R, Zhang L, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100

    Article  Google Scholar 

  10. Mao Y, Zhou J, Cai J et al (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255

    Article  Google Scholar 

  11. Zhang S, Li F, Yu J (2011) Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cellul Chem Technol 45:593–604

    Google Scholar 

  12. Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432

    Article  Google Scholar 

  13. Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215

    Article  Google Scholar 

  14. Yang Q, Fujisawa S, Saito T et al (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703

    Article  Google Scholar 

  15. Qi H, Cai J, Zhang L et al (2008) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89

    Article  Google Scholar 

  16. Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  17. Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51

    Article  Google Scholar 

  18. Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing Ltd, England

    Book  Google Scholar 

  19. Müller B, Gebert-Germ M, Russler A (2012) Viscont HT—the future of high performance viscose filaments and their textile applications. Lenzinger Ber 90:64–71

    Google Scholar 

  20. Jiang G, Huang W, Li L et al (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018

    Article  Google Scholar 

  21. Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  Google Scholar 

  22. Li R, Chang C, Zhou J, Zhang L et al (2010) Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution. Ind Eng Chem Res 49:11380–11384

    Article  Google Scholar 

  23. Chen X, Burger C, Fang D et al (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848

    Article  Google Scholar 

  24. Hauru LKJ, Hummel M, Michud A et al (2014) Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21:4471–4481

    Article  Google Scholar 

  25. Zhang H, Wang Z, Zhang Z et al (2007) Regenerated cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704

    Article  Google Scholar 

  26. Jiang G, Yuan Y, Wang B et al (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083

    Article  Google Scholar 

  27. Guo Y, Zhou J, Song Y et al (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508

    Article  Google Scholar 

  28. Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate-NaOH/ZnO aqueous Solution. ACS Sustainable Chem Eng 2:2604–2612

    Article  Google Scholar 

  29. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  30. Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053

    Article  Google Scholar 

  31. Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21:405–410

    Article  Google Scholar 

  32. Fang Z, Zhu H, Preston C et al (2014) Development, application and commercialization of transparent paper. Transl Mater Res 1:015004

    Article  Google Scholar 

  33. Fink H-P, Weigel P, Bohn A (2006) Supermolecular structure and orientation of blown cellulosic films. J Macromol Sci B 38:603–613

    Article  Google Scholar 

  34. Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  Google Scholar 

  35. Pang J, Wu M, Zhang Q et al (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78

    Article  Google Scholar 

  36. Pang J, Liu X, Zhang X et al (2013) Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6:1270–1284

    Google Scholar 

  37. Yang Q, Fukuzumi H, Saito T et al (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771

    Article  Google Scholar 

  38. Liu S, Zhang L, Sun Y et al (2009) Supramolecular structure and properties of high strength regenerated cellulose films. Macromol Biosci 9:29–35

    Article  Google Scholar 

  39. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    Article  Google Scholar 

  40. O’Neill JJ, Reichardt EP (1951) Method of producing cellulose pellets. US 2543928

    Google Scholar 

  41. Trygg J, Fardim P, Gericke M et al (2011) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299

    Article  Google Scholar 

  42. Sescousse R, Gavillon R, Budtova T (2011) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765

    Article  Google Scholar 

  43. Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73

    Article  Google Scholar 

  44. Ishimura D, Morimoto Y, Saito H (1998) Influences of chemical modifications on the mechanical strength of cellulose beads. Cellulose 5:135–151

    Article  Google Scholar 

  45. Rosenberg P, Suominen I, Rom M et al (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254

    Google Scholar 

  46. Rosenberg P, Rom M, Janicki J et al (2008) New cellulose beads from biocelsol solution. Cellul Chem Technol 42:293–305

    Google Scholar 

  47. Qi H, Sui X, Yuan J et al (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700

    Article  Google Scholar 

  48. Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929

    Article  Google Scholar 

  49. Pinnow M, Fink H-P, Fanter C et al (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139

    Article  Google Scholar 

  50. Twu Y-K, Huang H-I, Chang S-Y et al (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr Polym 54:425–430

    Article  Google Scholar 

  51. Liu M, Huang J, Deng Y (2007) Adsorption behaviors of l-arginine from aqueous solutions on a spherical cellulose adsorbent containing the sulfonic group. Bioresour Technol 98:1144–1148

    Article  Google Scholar 

  52. Du K-F, Yan M, Wang Q-Y et al (2010) Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J Chromatogr A 1217:1298–1304

    Article  Google Scholar 

  53. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  Google Scholar 

  54. Kadokawa JI, Murakami MA, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772

    Article  Google Scholar 

  55. Chang C, Zhang L, Zhou J et al (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  Google Scholar 

  56. Qin X, Lu A, Zhang L (2013) Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose 20:1669–1677

    Article  Google Scholar 

  57. Vashist A, Vashist A, Gupta YK et al (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2:147–166

    Article  Google Scholar 

  58. Cai J, Kimura S, Wada M et al (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154

    Article  Google Scholar 

  59. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  Google Scholar 

  60. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  Google Scholar 

  61. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774

    Article  Google Scholar 

  62. Wang Z, Liu S, Matsumoto Y et al (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399

    Article  Google Scholar 

  63. Poustis J, Baquey C, Chauveaux D (1994) Mechanical properties of cellulose in orthopaedic devices and related environments. Clin Mater 16:119–124

    Article  Google Scholar 

  64. Müller F, Müller L, Hofmann I et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    Article  Google Scholar 

  65. Laurence S, Bareille R, Baquey C et al (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res A 15:422–429

    Article  Google Scholar 

  66. Martson M, Viljanto J, Laippala P et al (1998) Connective tissue formation in subcutaneous cellulose sponge implants in the rat. The effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425

    Article  Google Scholar 

  67. Entcheva E, Bien H, Yin L et al (2004) Functional cadiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762

    Article  Google Scholar 

  68. Kim CW, Kim DS, Kang SY et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    Article  Google Scholar 

  69. Quan S, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230

    Article  Google Scholar 

  70. Xu S, Zhang J, He A et al (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917

    Article  Google Scholar 

  71. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940

    Article  Google Scholar 

  72. Freire MG, Teles ARR, Ferreira RAS et al (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180

    Article  Google Scholar 

  73. Wang Q, Cai J, Zhang L et al (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A1:6678–6686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisong Qi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Qi, H. (2017). Novel Regenerated Cellulosic Materials. In: Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49592-7_3

Download citation

Publish with us

Policies and ethics